|
|
CHRIST (Deemed to University), BangaloreDEPARTMENT OF MECHANICAL AND AUTOMOBILE ENGINEERINGSchool of Engineering and Technology |
|
Syllabus for
|
BS351 - ENGINEERING BIOLOGY LABORATORY (2023 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:1 |
Course Objectives/Course Description |
|
|
|
Learning Outcome |
|
CO1: Examine the various applications of bioengineering and using common tool boxes for analysing medical information. |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Unit-1 |
Teaching Hours:30 |
List of expriments
|
|
| |
Text Books And Reference Books: Nil | |
Essential Reading / Recommended Reading Nil | |
Evaluation Pattern Observation - 10 marks Record - 10 marks Conduction - 30 marks | |
CE351 - SUSTAINABLE GREEN TECHNOLOGY (2023 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
This course comprehensively deals with interdisciplinary engineering and design processes to achieve sustainability in the area of renewable energy, resources and waste management through experiential learning |
|
Learning Outcome |
|
CO1: Demonstrate a clear understanding and application of sustainability principles to develop and implement green technologies. CO2: Develop sustainable solutions to solve pressing issues in the area of Energy, Waste and Resource management. |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Unit-1 |
Teaching Hours:30 |
Real time projects
|
|
Project based on solar energy ●Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location
Projects based on water and other resources ●Conjunctive user planning of water resource(integrated surface and ground water management) for village
●Mapping of resources using Geospatial techniques
Projects based on waste management ●Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
●Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
●Evaluation of calorific value thereby valorisation of agro based waste in rural area for entrepreneurship opportunities. | |
Text Books And Reference Books: 1.Rogers, Peter P., Kazi F. Jalal, and John A. Boyd. "An introduction to sustainable development." (2012). 2.Kerr, Julie. Introduction to energy and climate: Developing a sustainable environment. CRC Press, 2017. | |
Essential Reading / Recommended Reading Based on alloted projects students need to refer respective journal publications reference materials. | |
Evaluation Pattern Students would be assessed both continously and stage wise Students would be assessed after every engagement for submissions and progress achived with respect to project- 50 marks Students projects at the end of semester would be assessed for 50 marks by panel constituted by the department- 50 marks | |
EVS321 - ENVIRONMENTAL SCIENCE (2023 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:0 |
Credits:0 |
Course Objectives/Course Description |
|
To understand the scope and importance of environmental science towards developing a conscious community for environmental issues, both at global and local scale. |
|
Learning Outcome |
|
CO1: Explain the components and concept of various ecosystems in the environment (L2, PO7) CO2: Explain the necessity of natural resources management (L2, PO1, PO2 and PO7) CO3: Relate the causes and impacts of environmental pollution (L4, PO1, PO2, and PO3, PO4) CO4: Relate climate change/global atmospheric changes and adaptation (L4,PO7) CO5: Appraise the role of technology and institutional mechanisms for environmental protection (L5, PO8) |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Text Books And Reference Books: T1Kaushik A and Kaushik. C. P, “Perspectives in Environmental Studies”New Age International Publishers, New Delhi, 2018 [Unit: I, II, III and IV] T2Asthana and Asthana, “A text Book of Environmental Studies”, S. Chand, New Delhi, Revised Edition, 2010 [Unit: I, II, III and V] T3Nandini. N, Sunitha. N and Tandon. S, “environmental Studies” , Sapana, Bangalore, June 2019 [Unit: I, II, III and IV] T4R Rajagopalan, “Environmental Studies – From Crisis to Cure”, Oxford, Seventh University Press, 2017, [Unit: I, II, III and IV]
| |
Essential Reading / Recommended Reading R1.Miller. G. T and Spoolman. S. E, “Environmental Science”, CENAGE Learning, New Delhi, 2015 R2.Masters, G andEla, W.P (2015), Introduction to environmental Engineering and Science, 3rd Edition. Pearson., New Delhi, 2013. R3.Raman Sivakumar, “Principals of Environmental Science and Engineering”, Second Edition, Cengage learning Singapore, 2005. R4.P. Meenakshi, “Elements of Environmental Science and Engineering”, Prentice Hall of India Private Limited, New Delhi, 2006. R5.S.M. Prakash, “Environmental Studies”, Elite Publishers Mangalore, 2007 R6.ErachBharucha, “Textbook of Environmental Studies”, for UGC, University press, 2005. R7. Dr. Pratiba Sing, Dr. AnoopSingh and Dr. PiyushMalaviya, “Textbook of Environmental and Ecology”, Acme Learning Pvt. Ltd. New Delhi. | |
Evaluation Pattern No Evaluation | |
MA335 - MATHEMATICS-III (2023 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
To enable the students to find the Fourier series and harmonic analysis of a periodic function, solve the boundary value problems using Fourier series, ordinary differential equations by series solution method and describe functionals and solve variational problems. |
|
Learning Outcome |
|
CO1: Representation linear transformation as a matrix. (L2) CO2: Apply vector operators to transform the Cartesian coordinate system into spherical and cylindrical forms. (L3) CO3: Estimate results by forward and backward interpolation. (L4) CO4: Deduce the periodic functions as Fourier series expansion. (L4) CO5: Predict the nature of partial differential equations and solve it by the method of variable separable. (L3) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Linear Transformation
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Linear Transformations, properties of linear transformation, Matrix representation of a linear transformation | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Coordinate Systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Curvilinear Coordinate System, Gradient, divergent, curl and Laplacian in cylindrical and Spherical Coordinate system, Transformation between systems. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Numerical Interpolation
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Newton’s forward and backward interpolation, Newton’s divided difference method, Lagrange’s interpolation and inverse interpolation | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Fourier Series
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Periodic functions, Dirichlet’s conditions, General Fourier series, Odd and even functions, Half range sine and cosine series, Harmonic Analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Partial Differential Equations
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Formation of PDE, Solution of homogeneous PDE involving derivative with respect to one independent variable only (Both types with given set of conditions), solution of non- homogeneous PDE by direct integration, Solution of Lagrange’s linear PDE of the type P p +Q q= R | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Dr. B. Grewal, “Higher Engineering Mathematics”, 43rd Edition, Khanna Publishers, July 2014. T2. H. K. Das & Rajnish Verma, “Higher Engineering Mathematics”, 20th Edition, S. Chand & Company Ltd., 2012 | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 10th Edition, John Wiley & Sons,Inc. 2011. R2. B.V. Ramana, 6th Reprint, “Higher Engineering Mathematics”, Tata-Macgraw Hill, 2008 R3. George F. Simmons and Steven G. Krantz, “Differential Equation, Theory, Technique and Practice”, Tata McGraw – Hill, 2006. R4. M. D. Raisinghania, “Ordinary and Partial Differential Equation”, Chand (S.) & Co. Ltd., India, March 17, 2005 | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
MAHO331DMP - DESIGN FOR ADDITIVE MANUFACTURING (2023 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
Additive Manufacturing (AM) is an economically viable alternative to conventional manufacturing technologies for producing highly complex parts. The main objective of this course is to acquaint students with the concept of AM, various AM technologies, selection of materials for AM, modeling of AM processes, and their applications in various fields. The course will also cover AM process plan including building strategies and post-processing. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Demonstrate the knowledge of Additive Manufacturing and Rapid Prototyping technologies. {L2} CO2: Describe different RP techniques used by manufacturing industries. {L2} CO3: Discuss the fundamentals of various mechanisms used in modern machine tools to accommodate additive manufacturing. {L2} CO4: Analyze various reverse engineering techniques in preparing STL models and 3D- CAD models to incorporate in rapid prototyping techniques. { L3} CO5: Examine various techniques in additive manufacturing techniques for preparing a better product. {L2} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Additive manufacturing Techniques
|
|||||||||||||||||||||||||||||||
Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM). | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Additive manufacturing Techniques
|
|||||||||||||||||||||||||||||||
Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM). | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Additive manufacturing Techniques
|
|||||||||||||||||||||||||||||||
Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM). | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
CNC Technology
|
|||||||||||||||||||||||||||||||
Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
CNC Technology
|
|||||||||||||||||||||||||||||||
Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
CNC Technology
|
|||||||||||||||||||||||||||||||
Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
3D Modelling
|
|||||||||||||||||||||||||||||||
Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
3D Modelling
|
|||||||||||||||||||||||||||||||
Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
3D Modelling
|
|||||||||||||||||||||||||||||||
Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
additive manufacturing tooling accuracy
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
additive manufacturing tooling accuracy
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
additive manufacturing tooling accuracy
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Text Books: T1. Gibson, I, Rosen, D W., and Stucker,B., Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.
T2. Chua C.K., Leong K.F., and Lim C.S., “Rapid prototyping: Principles and applications”, Third Edition, World Scientific Publishers, 2010.
T3. Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth Edition of Rapid Prototyping, World Scientific Publishers, 2014.
T4. Gebhardt A., “Rapid prototyping”, Hanser Gardener Publications, 2003. Reference Books: 1. Liou L.W. and Liou F.W., “Rapid Prototyping and Engineering applications: A tool box for prototype development”, CRC Press, 2007
2. Kamrani A.K. and Nasr E.A., “Rapid Prototyping: Theory and practice”, Springer, 2006
3. Mahamood R.M., Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG 2018
4. Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, “Laser Cladding”, CRC Press, 2004 Online Resources: W1. http://www.digimat.in/nptel/courses/video/112104204/L47.html | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
OEC371 - NCC3 (2023 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:15 |
No of Lecture Hours/Week:1 |
||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
This course is designed to provide a holistic development program combining personality enhancement, physical training, leadership skills, and technical expertise. Students will engage in physical training, learn fundamental drill techniques, and gain hands-on experience in aviation, including airmanship, aircraft forces, and specific technical details of the ZENAIR CH 701. The course also includes practical exercises such as obstacle courses and social service activities to foster leadership and community involvement. Through a blend of theoretical knowledge and practical skills, students will be well-prepared for roles requiring both personal development and technical proficiency. Develop self-awareness, confidence, and leadership qualities through structured personality development and leadership training. Understand the principles of airmanship and the forces acting on aircraft to enhance operational knowledge in aviation. Engage in social service activities to build leadership skills and contribute positively to the community. |
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO1: Develop and apply self-awareness, effective communication, and time management skills to enhance personal confidence and leadership capabilities. CO2: Apply principles of airmanship and technical knowledge to ensure safe and effective flight operations, including understanding aerodynamic forces and performing maintenance on the ZENAIR CH 701 aircraft. CO3: Demonstrate effective application of leadership and teamwork skills through the successful planning and execution of community engagement activities |
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Personality Development and leadership
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Knowledge and Technical Skills
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Application and Community Engagement
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. 2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. 2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OEC372 - ABILITY ENHANCEMENT COURSE III (2023 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description: This course covers technical reading and writing practices, professional communication for employment and at the workplace, and foundational mathematical concepts. It includes technical writing, report and proposal writing, listening and reading skills, job application preparation, group discussions, and presentation skills. It also addresses key mathematical topics such as number systems, percentages, data interpretation, ratios, speed, time, distance, and work-related problems. The course concludes with comprehensive training in C programming, covering data types, control flow, arrays, functions, structures, pointers, and file management. Course Objective: 1. Develop Technical Reading Skills: Equip students with effective reading strategies for comprehending complex technical documents. 2. Enhance Technical Writing Abilities: Teach the processes involved in writing clear and concise technical reports and proposals. 3. Improve Grammar and Editing Skills: Strengthen students' understanding of grammar, voice, speech, and common errors in technical writing. 4. Professional Communication Mastery: Foster skills in professional communication, including job application processes, resume writing, and email etiquette. 5. Group and Interpersonal Communication: Cultivate effective group discussion, interview techniques, and interpersonal communication skills for professional settings. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Proficient Technical Readers and Writers: Students will be able to effectively read and write technical documents, including reports and proposals. CO2: Grammar and Error Detection: Students will demonstrate improved grammar usage and the ability to identify and correct errors in technical writing. CO3: Professional Job Application Skills: Students will be capable of creating professional job application documents, such as resumes and cover letters. CO4: Enhanced Listening and Presentation Skills: Students will show improved listening comprehension and presentation abilities, crucial for professional environments CO5: Effective Group and Interpersonal Communicators: Students will be skilled in group discussions, job interviews, and interpersonal communication, enhancing their employability and workplace interactions. |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-1 |
Teaching Hours:6 |
Technical Reading and Writing Practices :
|
|
| |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-2 |
Teaching Hours:6 |
Professional Communication for Employment
|
|
Professional Communication for Employment : 1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener. 2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading. 3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment, Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos (Types of Memos) and other recent communication types.
Professional Communication at Workplace : 1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics, Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills - Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI. 2. Presentation skills and Formal Presentations by Students - Importance, Characteristics, Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical Sessions in class by Students)." | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-3 |
Teaching Hours:8 |
Number System
|
|
· Divisibility & Remainder · Multiples & Factors · Integers · LCM & HCF. · Complete a number Series · Find the Missing Term and Wrong Term Simplification · BODMAS Rule · Approximation · Decimals · Fractions · Surds & Indices
Percentage Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.
Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-4 |
Teaching Hours:8 |
Ratio and Proportion
|
|
· Simple Ratios · Compound Ratios · Comprehend and Dividend · Direct & Indirect Proportions · Problems on ages · Mixtures & Allegation Speed, Time and Distance · Relative Speed · Average Speed · Problems on Train · Boat & Stream. Time and Work · Work Efficiency · Work & Wages Pipes & Cisterns | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Unit-5 |
Teaching Hours:14 |
C Programming
|
|
Data Types, Operators and Expressions Input and output Operations Control Flow – Branching, Control Flow – Looping · Statements and Blocks · If..Else, Switch, Nesting of If..Else · GOTO statement · The while statement · The For statement · The Do statement · Jumps in loops
Arrays, Strings · One-dimensional arrays · Initialization of one-dimensional arrays · Two-dimensional Arrays · Initializing Two-dimensional arrays · Multi-dimensional arrays · Dynamic arrays · Declaring and Initializing string variables · Reading Strings from Terminal · Writing Strings to screen · String handling functions · Operations on strings
User-defined Functions, Structures · Basics of Functions · Functions Returning Non-integers · External Variables, Scope Rules · Header Files, Static Variables, Register Variables · Block Structure, Initialization, Recursion · Category of functions, Functions that return multiple values · Nesting functions, Multi-file programs · Structures and Functions, Arrays of Structures · Pointers to Structures, Self-referential structures
Unions, Pointers · Difference between Structures and Unions · Accessing the address of a variable · Declaring and Initializing pointer variables · Accessing a variable through its pointers · Chain of pointers · Pointer Expressions · Pointer Increments and Scale Factors · Pointers and character strings · Array of pointers · Pointers as function arguments · Functions returning pointers · Pointers to functions, Drawback of Pointers
File Management in C, The Preprocessor Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions. | |
Text Books And Reference Books: 1.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success Author: Gopalaswamy Ramesh and Mahadevan Ramesh Publisher: Pearson Education India Edition: 1st Edition (2010).ISBN: 9788131732857. 2.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success
Author: Gopalaswamy Ramesh and Mahadevan Ramesh
Publisher: Pearson Education India
Edition: 1st Edition (2010) ISBN: 9788131732857
| |
Essential Reading / Recommended Reading 1. Title: Quantitative Aptitude for Competitive Examinations Author: R.S. Aggarwal Publisher: S. Chand Publishing Edition: 2021 ISBN: 9789352836509
2. Title: How to Prepare for Quantitative Aptitude for the CAT Author: Arun Sharma Publisher: McGraw Hill Education Edition: 10th Edition (2022) ISBN: 9789354720196 . Title: Quantitative Aptitude for Competitive Examinations Author: R.S. Aggarwal Publisher: S. Chand Publishing Edition: 2021 ISBN: 9789352836509
3. Title: How to Prepare for Quantitative Aptitude for the CAT Author: Arun Sharma Publisher: McGraw Hill Education Edition: 10th Edition (2022) ISBN: 9789354720196. Title: Let Us C Author: YashavantKanetkar Publisher: BPB Publications Edition: 17th Edition (2020) ISBN: 9789388511393
4. Title: Let Us C Solutions Author: YashavantKanetkar Publisher: BPB Publications Edition: 13th Edition (2021) ISBN: 9789387284588
5. Title: The C Programming Language Author: Brian W. Kernighan and Dennis M. Ritchie Publisher: Prentice Hall Edition: 2nd Edition (1988) ISBN: 9780131103627 | |
Evaluation Pattern Total Credit=1 Overall CIA=50. | |
RM332P - ANALOG AND DIGITAL ELECTRONICS (2023 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
This course will enable students to: ● Recall and Recognize construction and characteristics of JFETs and MOSFETs and differentiate with BJT ● Demonstrate and Analyze Operational Amplifier circuits and their applications ● Describe and Design Decoders, Encoders, Digital multiplexers, Adders and Subtractors, Binary comparators, Latches and Master-Slave Flip-Flops. ● Describe, Design and Analyze Synchronous and Asynchronous Sequential circuits.. ● Explain and design registers and Counters, A/D and D/A converters. |
|
Learning Outcome |
|
CO1: Explain the transistor fundamentals including their characteristics. (L2) CO2: Understand the elements inside an opamp and design basic applications of opamp. (L4) CO3: Explain the concepts of analog to digital conversion and vice-versa. (L2) CO4: Understand the fundamental concepts and techniques used in digital processing circuits. (L2) CO5: Implement sequential logic circuits involving registers and counters. (L2) CO-6: Demonstrate the Analog and Digital Circuits. (L5) |
Unit-1 |
Teaching Hours:9 |
||||||
TRANSISTOR FUNDAMENTALS
|
|||||||
Bipolar Junction Transistors: Introduction, Construction of BJT, Current parameters, CE Configuration, DC Biasing: Fixed Bias and Emitter Bias Circuit, RC Coupled Amplifier Field Effect Transistors: Introduction, Junction Field Effect Transistors: Construction, JFET Characteristics and Transfer Characteristics, MOSFETs: Depletion Type and Enhancement Type, CMOS Devices, MOSFET as switch, Wave Shaping Circuit : Clipper, Clamper | |||||||
Unit-2 |
Teaching Hours:9 |
||||||
OPERATIONAL AMPLIFIER
|
|||||||
Introduction, Operational Amplifier (OpAmps) IC741 pin diagram, Ideal Characteristics of OpAmps, Inverting and Non Inverting Amplifier, Summing Amplifier [Adder], Difference Amplifier [ Subtractor], Comparator, Sample and Hold Circuit, Schmitt Triger, Astable Multivibrator, Monostable Multivibrator. | |||||||
Unit-3 |
Teaching Hours:9 |
||||||
D/A CONVERSION & A/D CONVERSION
|
|||||||
D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders, D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dualslope A/D Conversion, A/D Accuracy and Resolution. | |||||||
Unit-4 |
Teaching Hours:9 |
||||||
COMBINATIONAL LOGIC
|
|||||||
Introduction, Combinational Circuits, Analysis Procedure, Design procedure, Binary Adder-Subtractor, Decimal adder, Binary Multiplier, Magnitude Comparator, Decoder, Encoder, Multiplexer, HDL Models of Combinational Circuits. | |||||||
Unit-5 |
Teaching Hours:9 |
||||||
SEQUENTIAL LOGIC
|
|||||||
Synchronous Sequential logic: Introduction, Sequential Circuits, Storage Elements: Latches, Storage Elements: Flip-Flops, Analysis of Clocked Sequential Circuits, Synthesizable HDL Models of Sequential Circuits. Registers and Counters: Registers, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters, HDL for Registers and Counters. | |||||||
Text Books And Reference Books: T1. Robert L. Boylestad and Louis Nashelsky, “Electronic Devices & Circuit Theory”, 11th edition. T2. D Roy Chaoudhury and Shail B. Jain, “Linear Integrated Circuits” 4th Edition, New Age Inernational Publisher, 2017. T3. M. Morris Mano and Michael D. Ciletti, “Digital Design”, 5th Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2015/Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2013 | |||||||
Essential Reading / Recommended Reading R1. A.P. Malvino, Electronic Principles, Tata Mcgraw Hill Publications. R2. William Kleitz, Digital Electronics, Prentice Hall International Inc. R3. Nagrath, I J, “Electronics Analog and Digital”, New Delhi Prentice-Hall of India 1999 , ISBN:9788120314917 R4. Bhatia, Bhupesh, “Analog and Digital Electronics”, Firewall Media, 2008. ISBN:9788131804346 R5. A.S. Sedra & K.C.Smith, Microelectronics Circuits, Oxford University Press (1997). | |||||||
Evaluation Pattern
| |||||||
RM333P - ELECTRICAL DRIVES AND ACTUATORS (2023 Batch) | |||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
||||||
Max Marks:100 |
Credits:3 |
||||||
Course Objectives/Course Description |
|||||||
At the end of the course, the students would be able to ● To impart knowledge on the performance characteristics, speed control and starting methods of DC and AC motors. ● To impart knowledge on the basic of selection of drive for a given application. ● To impart knowledge on the concept of controlling the speed of DC and AC motor using Solid state converters. ● To prepare the students to understand, demonstrate and analyze the concepts of DC and AC Motors. ● To prepare the students to understand, demonstrate and analyze the concepts of DC Drive.
|
|||||||
Learning Outcome |
|||||||
CO-1: Explain the various method of speed control of DC and AC motors. CO-2: Describe the factors for selection of drive, various load pattern and determine their power rating. CO-3: Discuss the working of various power semiconductor devices. CO-4: Demonstrate the working of various power converters and inverters . CO-5: Apply and Analyze the control of DC and AC motors with solid state power converters and inverters. CO-6: Conduct the suitable method for speed control of DC and AC motors. |
Unit-1 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RELAY AND POWER SEMI-CONDUCTOR DEVICES
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Study of Switching Devices – Relay and Types, Switching characteristics -BJT, SCR, TRIAC, GTO, MOSFET, IGBT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit -Introduction to Driver and snubber circuits | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DRIVE CHARACTERISTICS
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, torque, and Direction starting & stopping – Selection of motor. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DC MOTORS AND DRIVES
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DC Servomotor - Types of PMDC & BLDC motors - principle of operation- emf and torque equations- characteristics and control – Drives- H bridge - Single and Three Phases – 4 quadrant operation –Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:11 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AC MOTORS AND DRIVES
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction – Induction motor drives – Speed control of 3-phase induction motor – Stator voltage control – Stator frequency control – Stator voltage and frequency control – Stator current control –Static rotor resistance control – Slip power recovery control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
STEPPER AND SERVO MOTOR
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Advantages of Solid State Control - Control of DC Drives using Converters – Choppers – Control of Three Phase Induction Motors using Stator Voltage Control – V/F Control and Slip Power Recovery Schemes using Inverters and AC power regulators. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Gopal K. Dubey, “Fundamentals of Electric Drives”, Narosa Publications, New Delhi, 2nd Edition, 2002. T2. Kothari D.P., Nagrath I.J., “Electrical Machines”, Tata McGraw Hill Education India Private Limited, New Delhi, 3rd Edition, 2004. T3. Vedam Subrahmanyam, “Electric Drives: Concept and Application”, Tata McGraw-Hill Education, 2nd Edition, 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Sen P.C., “Principles of Electrical Machines and Power Electronics”, John Wiley Publications Private Limited, 3rd Edition, 2013. R2. Pillai S.K., “A First course on Electrical Drives”, New Age International Private Limited, New Delhi, 1991. R3. Bhattacharya, “Electrical Machines”, Tata McGraw Hill Education, 2008. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM334P - BASIC CONCEPTS OF MECHATRONICS AND PLC (2023 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This course aims at providing fundamental understanding about the basic elements of a mechatronics system, interfacing, and its practical applications. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Explain the concepts of mechatronics elements. (L2) CO-2: Classify and select the sensors and transducers for the different application. (L2) CO-3: Illustrate the drives and actuators(L2) CO-4: Explain the concept of PLC and HMI (L3) CO-5: Write basic PLC ladder programming (L3) CO-6: Develop ladder programming for different industrial application(L5) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction: Definition of Mechanical Systems, Philosophy and approach; Systems and Design: Mechatronic approach, Integrated Product Design, Modeling, Analysis and Simulation, Man-Machine Interface. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensors and transducers
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensors and transducers: classification, Development in Transducer technology, Opto- Electronics-Shaft encoders, CD Sensors, Vision System, etc. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Drives and Actuators
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Actuators: Hydraulic and Pneumatic drives, Electrical Actuators Drives: Motor drives- DC motors, stepper motor, servo motor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Programmable Logic Controllers:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Programmable Logic Controllers (PLC) based control system, programming languages & instruction set, ladder logic, functional blocks, structured text, and applications. Human Machine Interface (HMI) & Supervisory Control and Data Acquisition System (SCADA); motion controller, applications of RFID technology and machine vision. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basics of PLC Programming:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Mechatronics System Design, Devdas Shetty & Richard A. Kolk, PWS Publishing Company (Thomson Learning Inc.). T2. Mechatronics: A Multidisciplinary Approach, William Bolton, Pearson Education T3. A Textbook of Mechatronics, R.K. Rajput, S. Chand & Company Private Limited T4. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, William Bolton, Prentice Hall. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. “MECHATRONICS”, Tata McGraw-Hill Publishing Company Ltd, New Delhi 2005, ISBN: 9780074636435. R2. Bolton, , “MECHATRONICS”, New Delhi Pearson Education 2003, ISBN:8177582844. R3. “MECHATRONICS: A FOUNDATION COURSE”, Baton Rouge: Taylor & Francis Group, 2010. ISBN:9781420082128 R4. John W. Webb & Ronald A. Reis, Programmable Logic Controllers – Principles and Applications, Fifth Edition, Pearson Education (2008). R5. John R. Hackworth & Frederick D. Hackworth Jr, Programmable Logic Controllers – Programming Methods and Applications, Pearson (2011). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM335 - MANUFACTURING TECHNOLOGY (2023 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Identify different axes, machine zero, home position, systems and controls CNC machines.(L2) CO-2: Implement the ideas developed in additive manufacturing processes.(L2) CO-3: Interpret the digital twin technology and Industry 4.0 concepts in real-time.(L2) CO-4: Relate fundamental knowledge developed in automation and smart factory in industries.(L3) CO-5: Explain digitizing methods and main technologies in IOT.(L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Manufacturing Processes
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to primary manufacturing processes (rolling, drawing, extrusion, forging and metal forming processes). Basic concepts in secondary manufacturing processes (surface finishing, coating, welding and painting). | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
CNC Machines
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Computer Numerical Control: CNC Systems – An Overview of Fundamental aspects of machine control, Different types of CNC machines – Advantages and disadvantages of CNC machines. NC part programming, G and M codes, Creating profiles using NC programming, CAM, NC, CNC and DNC, selection criteria for CNC machines, adaptive control. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Robot Manufacturing
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Pick and place, palletizing and depalletizing, machining loading and unloading, welding & assembly, Medical, agricultural and space applications, unmanned vehicles: ground, Ariel and underwater applications, robotic for computer integrated manufacturing. Types of robots: Manipulator, Legged robot, wheeled robot, aerial robots, Industrial robots, Humanoids, Robots, Autonomous robots, and Swarm robots. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Automation
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Automation in production system, principles and strategies for automation, basic element of an automated system, advanced automation functions, Levels of Automation, Automation Flow Lines, Methods of Work Part transport, Transfer Mechanism, Automated storage and material handling systems, Automated assembly system. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Advanced Materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Polyjet, LENS, Metal and Ceramic printing, Electronic Materials, Bioprinting, Food Printing. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Additive Manufacturing Processes
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Fused Deposition Modeling, Stereolithography systems, Selective Laser Sintering, Solid Ground Curing, Powder Bed Fusion, Beam Deposition, Sheet Lamination: Principles, Materials, Process, Benefits and Drawbacks, Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Industry 4.0
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Concept, Globalization and emerging issues, the Fourth Revolution, Lean Manufacturing, smart and connected business perspectives, Cloud applications in manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Digital Twin Technology
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Basic Concepts of Digital Twin, Features and Implementation, Digital Twin: Digital Thread and Digital Shadow, Building Blocks, Types and Characteristics of a good digital twin platform, Benefits and Impact and Challenges, Future of Digital Twins. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
IOT in Manufacturing
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Overview, History, Definition and Characteristics, Connectivity Terminologies, Building blocks, Types of technologies used in IoT System, Baseline Technologies (Machine-to-Machine (M2M) communications, Cyber-Physical-Systems (CPS)), IoT Vs M2M, IoT enabled Technologies, IoT Levels and Templates, Design Methodology, The Physical Design Vs Logical Design of IoT, Functional blocks of IoT and Communication Models/Technologies, Development Tools used in IoT. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Smart Factory
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Levels of Smart Factories, Benefits, Technologies used in smart factory, smart factory in IOT, Key principles of a smart factory, Creating a smart factory, smart factories and cybersecurity. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. R.Rajasekar, C.Moganapriya, M.Harikrishna Kumar, P. Sathish Kumar, Integration of Mechanical and Manufacturing Engineering with IoT: A Digital Transformation, John Wiley and Sons, 2023. ISBN: 978-1-119-86537-7 T2. Vytautas Ostaševičius, Digital Twins in Manufacturing: Virtual and Physical Twins for Advanced Manufacturing, Springer, 2022. T3. Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty , Srikanta Pal, Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing, Springer, 2021. ISBN: 978-3030818142. T4. C. P. Paul, A. N. Jinoop, Additive Manufacturing: Principles, Technologies and Applications, McGraw Hill, 2021. ISBN: 9789390727483. T5. P.N.Rao, N.K.Tiwari, T. Kundra, Computer Aided Manufacturing, Tata McGraw Hill, New Delhi,2014. T6. R.K.Rajput, A textbook of Manufacturing Technology (Manufacturing Processes), Laxmi Publications, 2019. ISBN-13: 978-8131802441 | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson education, Fourth Edition, 2016. R2. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2016. R3. P.C.Sharma, A Textbook of Manufacturing Technology I and II, S.Chand Publishing, 2019. R4. G. Chaudhary, M. Khari, M. Elhoseny, Digital Twin Technology, CNC Press, 2022. ISBN: 9780367677954. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
CSE451 - EXTENDED REALITIES (2023 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Description: The course covers contents from basics of XR(AR-VR-MR), Unity Basic concepts, Introductory concepts of C# programming, functions of Augmented Reality.
Course objectives: Students should be able to: ● Understand the core concepts and applications of Extended Reality (XR). ● Navigate and utilize the Unity platform proficiently for XR development. ● Develop XR experiences using C# scripting for interactive elements. ● Create Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments. ● Design and implement immersive user interfaces tailored for XR applications. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain core concepts and applications of Extended Reality (XR) through analysis and evaluation across various domains. CO2: Develop using Unity platform proficiently for XR development, demonstrating synthesis and creation of immersive environments CO3: Develop XR experiences using C# scripting, integrating critical thinking and problem-solving skills. CO4: Build Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments, applying creative thinking and knowledge synthesis. CO5: Develop immersive user interfaces tailored for XR applications, ensuring optimal user experience and engagement. |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-1 |
Teaching Hours:6 |
XR(AR,VR,MR) Essentials
|
|
Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-2 |
Teaching Hours:14 |
Unity Basics
|
|
Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-3 |
Teaching Hours:14 |
Scripting introduction using C#
|
|
Data types, variables and operators.Control structures: If statements and loops. Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-4 |
Teaching Hours:14 |
Augmented Reality
|
|
Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences. | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Unit-5 |
Teaching Hours:12 |
Development for Virtual Reality and Mixed Reality
|
|
Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality. Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors) | |
Text Books And Reference Books: Steven M Lavelle: Virtual reality, Cambridge University Press, 2023 | |
Essential Reading / Recommended Reading R1. https://learn.unity.com/pathway/unity-essentials | |
Evaluation Pattern CIA: 50 marks ESE: 50 marks (Scale down to 50 marks - Department level) | |
CY421 - CYBER SECURITY (2023 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:0 |
Credits:0 |
Course Objectives/Course Description |
|
This mandatory course is aimed at providing a comprehensive overview of the different facets of Cyber Security. In addition, the course will detail into specifics of Cyber Security with Cyber Laws both in Global and Indian Legal environments |
|
Learning Outcome |
|
CO1: Describe the basic security fundamentals and cyber laws and legalities. CO2: Describe various cyber security vulnerabilities and threats such as virus, worms, online attacks, Dos and others. CO3: Explain the regulations and acts to prevent cyber-attacks such as Risk assessment and security policy management. CO4: Explain various vulnerability assessment and penetration testing tools. CO5: Explain various protection methods to safeguard from cyber-attacks using technologies like cryptography and Intrusion prevention systems. |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Text Books And Reference Books: R1. Matt Bishop, “Introduction to Computer Security”, Pearson, 6th impression, ISBN: 978-81-7758-425-7. R2. Thomas R, Justin Peltier, John, “Information Security Fundamentals”, Auerbach Publications. R3. AtulKahate, “Cryptography and Network Security”, 2nd Edition, Tata McGrawHill.2003 R4. Nina Godbole, SunitBelapure, “Cyber Security”, Wiley India 1st Edition 2011 R5. Jennifer L. Bayuk and Jason Healey and Paul Rohmeyer and Marcus Sachs, “Cyber Security Policy Guidebook”, Wiley; 1 edition , 2012 R6. Dan Shoemaker and Wm. Arthur Conklin, “Cyber security: The Essential Body Of Knowledge”, Delmar Cengage Learning; 1 edition, 2011 R7. Stallings, “Cryptography & Network Security - Principles & Practice”, Prentice Hall, 6th Edition 2014 | |
Essential Reading / Recommended Reading -- | |
Evaluation Pattern Only CIA will be conducted as per the University norms. No ESE Maximum Marks : 50 | |
HS445E1 - PROFESSIONAL ETHICS (2023 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
This paper deals with the various organizational behaviors like learning, perception, motivation and method of managing stress and conflicts and the basic principles of communication. |
|
Learning Outcome |
|
CO1: Understand the importance of Values and Ethics in their personal lives and professional careers CO2: Learn the rights and responsibilities as an employee, team member and a global citizen CO3: Estimate the impact of self and organization's actions on the stakeholders and society CO4: Develop an ethical behaviour under all situations CO5: Appreciate the significance of Intellectual Property as a very important driver of growth and development in today's world and be able to statutorily acquire and use different types of intellectual property in their professional life |
Unit-1 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Professional Ethics
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Definition, Nature, Scope- Moral Dilemmas- moral Autonomy-Kohlberg’s theory- Gilligan’s theory, Profession Persuasive, Definitions, Multiple motives, Models of professional goals. Moral Reasoning and Ethical theories – Professional Ideals and Virtues- Theories of Right Action, Self- interest, Customs and Regions- Use of ethical Theories | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Engineering as Social Experimentation and Responsibility
|
|||||||||||||||||||||||||||||||||||||||||||||||||
For Safety Engineering as experimentation- Engineers as responsible experimenters, the challenger case, Codes of Ethics, A balanced outlook on law. Concept of safety and risk, assessment of safety and risk- risk benefit analysis and reducing the risk- three- mile island, Chernobyl and safe exists | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Global Issues and Introduction To Intellectual Property
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Multinational corporations- Environmental ethics- Computer ethics and Weapons developments. Meaning and Types of Intellectual Property, Intellectual Property. Law Basics, Agencies responsible for intellectual property registration, International Organizations, Agencies and Treaties, Importance of Intellectual Property Rights. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Foundations of Trademarks
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Meaning of Trademarks, Purpose and Functions of Trademarks, types of Marks, Acquisition of Trademark rights, Common Law rights, Categories of Marks, Trade names and Business Name, Protectable Matter, Exclusions from Trademark Protection. Work process. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Foundations of Copyrights Laws and Patent Laws
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Meaning of Copyrights, Common Law rights and Rights under the 1976 copyright Act, Recent developments of the Copyright Act, The United States Copyright Office. Meaning of Patent Law, Rights under Federal Law, United States patent and Trademark Office, Patentability, Design Patents, Plants patents, Double Patenting. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: R1. Nagarajan “A Text Book on Professional ethics and Human values”, New Age International, 2009. R2. Charles &Fleddermann “Engineering Ethics”, Pearson, 2009. R3. Rachana Singh Puri and Arvind Viswanathan, I.K.”Practical Approach to Intellectual Property rights”, International Publishing House, New Delhi. 2010. R4. A.B.Rao “Business Ethics and Professional Values”, Excel, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading T1. Jayashree Suresh &B.S.Raghavan “Human values and Professional Ethics”, S. Chand, 2009. T2. Govindarajan, Natarajan and Senthilkumar “Engineering Ethics”, PHI:009. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
MAHO431DMP - COMPUTER AIDED ENGINEERING (2023 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course objectives: •To introduce the Industry experience to student in product design and developments. •To know the stages involved in any product design and development. •To develop the student’s skills to solve the problems facing while geometry modelling and FE modelling. •To guide the students in selection of geometry for its validation for required application. •To enhance the problem analysis knowledge in modelling and analysis. •To improve the knowledge in identify the problem and selection of analysis method and hence to validate the output of CAE tools.
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Understand the possibilities of CAD modelling and analysis. CO2: Apply geometrical modelling to create solid models and its boundary conditions CO3: Apply the knowledge of static and dynamic analysis on solid models. CO4: Apply the knowledge of loading and boundary conditions on part models. CO5: Validate the results of FEA and apply error correction on solid models created. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
INTRODUCTION:
|
|||||||||||||||||||||||||||||
CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
INTRODUCTION:
|
|||||||||||||||||||||||||||||
CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
INTRODUCTION:
|
|||||||||||||||||||||||||||||
CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Geometry Modelling
|
|||||||||||||||||||||||||||||
Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Geometry Modelling
|
|||||||||||||||||||||||||||||
Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Geometry Modelling
|
|||||||||||||||||||||||||||||
Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Finite Element Modelling:
|
|||||||||||||||||||||||||||||
Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Finite Element Modelling:
|
|||||||||||||||||||||||||||||
Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Finite Element Modelling:
|
|||||||||||||||||||||||||||||
Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review. | |||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Loads and boundary conditions:
|
|||||||||||||||||||||||||||||
Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads. Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., | |||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Loads and boundary conditions:
|
|||||||||||||||||||||||||||||
Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads. Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., | |||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Loads and boundary conditions:
|
|||||||||||||||||||||||||||||
Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads. Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., | |||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Error rectification Verification/Validation of output results
|
|||||||||||||||||||||||||||||
Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.
Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results. | |||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Error rectification Verification/Validation of output results
|
|||||||||||||||||||||||||||||
Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.
Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results. | |||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||
Error rectification Verification/Validation of output results
|
|||||||||||||||||||||||||||||
Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.
Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results. | |||||||||||||||||||||||||||||
Text Books And Reference Books: 1. K L Narayana, P Kannaiah & K Venkata Reddy, “Machine Drawing” 5th edition, new age International Publishers 2016. 2. N.D.Bhat & V.M.Panchal, “A Primer on Computer Aided Machine Drawing-2007”, VTU, Belgaum, ‘Machine Drawing', 2012.
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Reference Books: R1. S. Trymbaka Murthy,”A Text Book of Computer Aided Machine Drawing”, CBS Publishers, New Delhi, 2007 R2. K.R. Gopala Krishna, “Machine Drawing”, Subhash Publication, 2012. R3. Goutam Pohit & Goutham Ghosh, “Machine Drawing with Auto CAD”,1st Indian print Pearson Education, 2007 R4. Sham Tickoo, “Auto CAD 2015 for engineers and designers”, Dream tech 2015 R5. N. Siddeshwar, P. Kanniah, V.V.S. Sastri, “Machine Drawing”, published by Tata Mc GrawHill,2006 R6. Alex Krulikowski, “Fundamentals of Geometric Dimension & Tolerancing”, 6th edition, Goodheart-Willcox Pub ,25 November 2014
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MICSAI432 - DATA STRUCTURES AND ALGORITHMS (2023 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course provides knowledge on Stacks, Queues, Linked Lists, Trees and Heap. The knowledge of C language and data structures will be reinforced by practical exercises during the course of study. The course will help students to develop the capability to select and design data structures for algorithms that are appropriate for problems that they might encounter. Course Objective: To understand the basic concept of data structures for storage and retrieval of ordered or unordered data. Data structures include: arrays, linked lists, binary trees, heaps, and hash tables.
|
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: Explain the basic concepts of data structures and solve the time complexity of the algorithm CO2: Experiment with various operations on Linear Data structures CO3: Examine the Structures and Operations of Trees and Heaps Data Structures CO4: Compare various given sorting techniques with respect to time complexity CO5: Choose various shortest path algorithms to determine the minimum spanning path for the given graphs |
Unit-1 |
Teaching Hours:11 |
Introduction
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis Practical Experiments / Experiential Learning: Ex 1: Implement the applications Stack ADT Ex 2: Implement the applications for Queue ADT | |
Unit-1 |
Teaching Hours:11 |
Introduction
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis Practical Experiments / Experiential Learning: Ex 1: Implement the applications Stack ADT Ex 2: Implement the applications for Queue ADT | |
Unit-1 |
Teaching Hours:11 |
Introduction
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis Practical Experiments / Experiential Learning: Ex 1: Implement the applications Stack ADT Ex 2: Implement the applications for Queue ADT | |
Unit-1 |
Teaching Hours:11 |
Introduction
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis Practical Experiments / Experiential Learning: Ex 1: Implement the applications Stack ADT Ex 2: Implement the applications for Queue ADT | |
Unit-1 |
Teaching Hours:11 |
Introduction
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis Practical Experiments / Experiential Learning: Ex 1: Implement the applications Stack ADT Ex 2: Implement the applications for Queue ADT | |
Unit-2 |
Teaching Hours:14 |
Lists, Stacks and Queues
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues Practical Experiments / Experiential Learning: Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix] Ex 2: Search Tree ADT - Binary Search Tree | |
Unit-2 |
Teaching Hours:14 |
Lists, Stacks and Queues
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues Practical Experiments / Experiential Learning: Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix] Ex 2: Search Tree ADT - Binary Search Tree | |
Unit-2 |
Teaching Hours:14 |
Lists, Stacks and Queues
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues Practical Experiments / Experiential Learning: Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix] Ex 2: Search Tree ADT - Binary Search Tree | |
Unit-2 |
Teaching Hours:14 |
Lists, Stacks and Queues
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues Practical Experiments / Experiential Learning: Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix] Ex 2: Search Tree ADT - Binary Search Tree | |
Unit-2 |
Teaching Hours:14 |
Lists, Stacks and Queues
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues Practical Experiments / Experiential Learning: Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix] Ex 2: Search Tree ADT - Binary Search Tree | |
Unit-3 |
Teaching Hours:13 |
Trees
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap Practical Experiments / Experiential Learning: Ex 1: Heap Sort Ex 2: Quick Sort | |
Unit-3 |
Teaching Hours:13 |
Trees
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap Practical Experiments / Experiential Learning: Ex 1: Heap Sort Ex 2: Quick Sort | |
Unit-3 |
Teaching Hours:13 |
Trees
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap Practical Experiments / Experiential Learning: Ex 1: Heap Sort Ex 2: Quick Sort | |
Unit-3 |
Teaching Hours:13 |
Trees
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap Practical Experiments / Experiential Learning: Ex 1: Heap Sort Ex 2: Quick Sort | |
Unit-3 |
Teaching Hours:13 |
Trees
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap Practical Experiments / Experiential Learning: Ex 1: Heap Sort Ex 2: Quick Sort | |
Unit-4 |
Teaching Hours:11 |
Sorting
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting Practical Experiments / Experiential Learning: Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures Ex 2: To determine the time complexity of a given logic. | |
Unit-4 |
Teaching Hours:11 |
Sorting
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting Practical Experiments / Experiential Learning: Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures Ex 2: To determine the time complexity of a given logic. | |
Unit-4 |
Teaching Hours:11 |
Sorting
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting Practical Experiments / Experiential Learning: Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures Ex 2: To determine the time complexity of a given logic. | |
Unit-4 |
Teaching Hours:11 |
Sorting
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting Practical Experiments / Experiential Learning: Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures Ex 2: To determine the time complexity of a given logic. | |
Unit-4 |
Teaching Hours:11 |
Sorting
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting Practical Experiments / Experiential Learning: Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures Ex 2: To determine the time complexity of a given logic. | |
Unit-5 |
Teaching Hours:11 |
Graphs
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study Practical Experiments / Experiential Learning: Ex 1: Implementing a Hash function/Hashing Mechanism. Ex 2: Implementing any of the shortest path algorithms | |
Unit-5 |
Teaching Hours:11 |
Graphs
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study Practical Experiments / Experiential Learning: Ex 1: Implementing a Hash function/Hashing Mechanism. Ex 2: Implementing any of the shortest path algorithms | |
Unit-5 |
Teaching Hours:11 |
Graphs
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study Practical Experiments / Experiential Learning: Ex 1: Implementing a Hash function/Hashing Mechanism. Ex 2: Implementing any of the shortest path algorithms | |
Unit-5 |
Teaching Hours:11 |
Graphs
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study Practical Experiments / Experiential Learning: Ex 1: Implementing a Hash function/Hashing Mechanism. Ex 2: Implementing any of the shortest path algorithms | |
Unit-5 |
Teaching Hours:11 |
Graphs
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study Practical Experiments / Experiential Learning: Ex 1: Implementing a Hash function/Hashing Mechanism. Ex 2: Implementing any of the shortest path algorithms | |
Text Books And Reference Books: Text Book: T1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in Java”, 3rd Edition, Pearson Education 2013. | |
Essential Reading / Recommended Reading References (Text / Online Ref): R1. Fundamentals of data structure in C by Ellis Horowitz, Sarataj Shani 3rd edition, Galgotia book source PVT,2010. R2.Classic Data Structures , Debasis Samanta ,2nd Edition, PHI Learning PVT,2011 | |
Evaluation Pattern CIA 1 : 20 Marks CIA 2 : 50 Marks CIA 3 : 20 Marks ESE : 100 Marks CIA scaled down to 70 marks and ESE to 30 marks | |
MIMBA432 - ORGANISATIONAL BEHAVIOUR (2023 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
Course Description: The course is offered as a mandatory core course for all students in Trimester II. The course introduces students to a comprehensive set of concepts and theories, facts about human behaviour and organizations that have been acquired over the years. The subject focuses on ways and means to improve productivity, minimize absenteeism, increase employee engagement and so on thus, contributing to the overall effectiveness. The basic discipline of the course is behavioral science, sociology, social psychology, anthropology and political science
Course Objectives: To make sense of human behaviour, use of common sense and intuition is largely inadequate because human behaviour is seldom random. Every human action has an underlying purpose which was aimed at personal or societal interest. Moreover, the uniqueness of each individual provides enough challenges for the managers to predict their best behaviour at any point of time. A systematic study of human behaviour looks at the consistencies, patterns and cause effect relationships which will facilitate understanding it in a reasonable extent. Systematic study replaces the possible biases of intuition that can sabotage the employee morale in organizations |
|
Learning Outcome |
|
CO1: Determine the individual and group behavior in the workplace CO2: Assess the concepts of personality, perception and learning in Organizations C03: Analyze various job-related attitudes CO4: Design motivational techniques for job design, employee involvement, incentives, rewards & recognitions CO5: Manage effective groups and teams in organizations |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-1 |
Teaching Hours:9 |
Introduction to Organizational Behaviour
|
|
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.
Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-2 |
Teaching Hours:9 |
Individual Behaviour ? Personality, Perception and Learning
|
|
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-3 |
Teaching Hours:9 |
Attitudes, Values & Job Satisfaction
|
|
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-4 |
Teaching Hours:9 |
Motivation
|
|
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Unit-5 |
Teaching Hours:9 |
Groups & Teams
|
|
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making | |
Text Books And Reference Books: T1. Robbins, S P., Judge, T A and Vohra, N (2016). Organizational Behavior. 16th Edition, Prentice Hall of India | |
Essential Reading / Recommended Reading T1. Robbins, S P., Judge, T A and Vohra, N (2016). Organizational Behavior. 16th Edition, Prentice Hall of India | |
Evaluation Pattern CIA1 - 20 MSE - 50 CIA 3- 20 ESE - 100 | |
OEC471 - NCC4 (2023 Batch) | |
Total Teaching Hours for Semester:15 |
No of Lecture Hours/Week:1 |
Max Marks:50 |
Credits:1 |
Course Objectives/Course Description |
|
This course offers an integrated approach to disaster management, physical training, and aviation operations, designed to prepare students for effective response and leadership in emergency situations. It includes comprehensive training in physical fitness, fundamental drill techniques, aviation medicine, and standard operating procedures for ground handling. Students will also engage in practical exercises such as obstacle courses and social service activities to develop their skills in operational readiness, safety checks, and community engagement. This course equips students with the necessary skills to manage disasters effectively, maintain high safety standards, and contribute positively to their communities. Master standard ground handling procedures and conduct thorough internal and external safety checks to ensure operational readiness and safety in aviation environments. Apply principles of disaster management to effectively plan for and respond to emergency situations, ensuring efficient and coordinated disaster response. Integrate theoretical knowledge with practical skills to address various challenges in disaster management and aviation safety, ensuring a comprehensive approach to both personal and professional development. |
|
Learning Outcome |
|
CO1: Demonstrate improved physical fitness, including cardiovascular endurance, strength, and flexibility, while mastering fundamental foot and rifle drills. CO2: Exhibit leadership skills and effectively apply disaster management principles in practical scenarios CO3: Demonstrate comprehensive knowledge and application of aviation safety protocols, including health and safety in aviation, medical emergencies and first aid, standard ground handling procedures |
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical Fitness and Drill Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Leadership and Disaster Management
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aviation Safety and Operational Procedures
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. 2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. 2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OEC472 - ABILITY ENHANCEMENT COURSE - IV (2023 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:42 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description: This course enhances essential skills across five units: presentation and writing skills, assertiveness and teamwork, interview techniques, quantitative aptitude, and C++ programming. It covers planning and delivering presentations, advanced writing practices, assertive communication, effective teamwork, and mastering job interviews. The course also includes mathematical concepts like averages, data sufficiency, permutations, combinations, and probability. Additionally, it provides comprehensive training in C++ programming, focusing on object-oriented principles, dynamic memory management, and advanced features. Course Objective: 1. Develop effective presentation skills, including planning, structuring, and engaging the audience. 2. Enhance writing proficiency with a focus on paragraph organization, proper punctuation, and error correction. 3. Cultivate assertive communication and teamwork strategies for collaborative success. 4. Master interview techniques, including preparation, execution, and follow-up. 5. Understand and apply mathematical concepts in averages, mixtures, data sufficiency, permutations, combinations, and probability. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Deliver structured and visually supported presentations with confidence. CO2: Write coherent, concise, and error-free documents. CO3: Communicate assertively and work effectively within teams. CO4: Successfully navigate various types of interviews and handle challenging questions. CO5: Solve complex mathematical problems involving averages, mixtures, permutations, combinations, and probability. |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-1 |
Teaching Hours:6 |
Presentation Skills
|
|
Planning and Structuring a Presentation > Effective Use of Visual Aids > Engaging the Audience: Techniques and Strategies > Overcoming Stage Fear > Evaluating Presentation Success Nature and Style of sensible writing : 1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and Paraphrasing. 2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words, Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-2 |
Teaching Hours:6 |
Assertiveness
|
|
> Understanding the Difference: Assertiveness vs Aggressiveness > Benefits of Being Assertive > Techniques for Assertive Communication > Saying No Politely and Firmly > Assertiveness Role-Plays
Team Work and Collaboration > Characteristics of Effective Teams > Roles and Responsibilities within Teams > Strategies for Collaborative Work > Handling Team Conflicts > Celebrating Team Successes
| |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-3 |
Teaching Hours:6 |
Interview Skills
|
|
Interview Skills
> Introduction to Interviews > The Purpose of an Interview > Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical
> Before the Interview > Researching the Company/Organization > Analyzing the Job Description > Preparing Relevant Answers for Common Interview Questions
> During the Interview > Dress Code and Personal Grooming > Body Language: Eye Contact, Posture, and Handshake > Listening Actively and Responding Clearly > Asking Thoughtful Questions to the Interviewer
> Technical vs Behavioral Interviews > Understanding Technical Skill Evaluation > STAR Technique (Situation, Task, Action, Result) for Behavioral Questions
> Handling Challenging Questions and Situations > Addressing Gaps in Employment > Discussing Strengths, Weaknesses, and Failures > Navigating Salary Discussions
> After the Interview > Crafting a Follow-up Email or Letter > Reflecting on Interview Performance > Preparing for the Next Steps | |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-4 |
Teaching Hours:8 |
Averages and Alligations mixtures:
|
|
Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.
Data Sufficiency: Questions based on > Quantitative aptitude > Reasoning aptitude > Puzzles Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle. Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.
| |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Unit-5 |
Teaching Hours:14 |
C++ Object oriented Programming
|
|
· Class and Objects · Dynamic Memory Management POP, · OOPs in C++ · Console Input / Output in C++ · Comment lines in C++ · Importance of function prototyping in C++ · Function overloading · Inline functions and default arguments · Scope Resolution Operator · Structures · Defining function outside the class · Friend functions, Friend class · Array of class objects · Passing class objects to and returning class objects from functions · Nested classes, Namespaces · Dynamic memory allocation using new and deallocation new handler function | |
Text Books And Reference Books: 1.Title: The Elements of Style
Author: William Strunk Jr. and E.B. White
Publisher: Pearson
Edition: 4th Edition ISBN: 9780205309023. 2.Title: Cracking the Coding Interview
Author: Gayle Laakmann McDowell
Publisher: CareerCup
Edition: 6th Edition ISBN: 9780984782857
| |
Essential Reading / Recommended Reading 1.Title: The Assertiveness Workbook: How to Express Your Ideas and Stand Up for Yourself at Work and in Relationships Author: Randy J. Paterson Publisher: New Harbinger Publications Edition: 1st Edition ISBN: 9781572242098. 2.Title: Quantitative Aptitude for Competitive Examinations Author: R.S. Aggarwal Publisher: S. Chand Publishing Edition: 2021 ISBN: 9789352836509
3. Title: How to Prepare for Quantitative Aptitude for the CAT Author: Arun Sharma Publisher: McGraw Hill Education
Edition: 10th Edition (2022). 4.Title: Let Us C++
Author: YashavantKanetkar
Publisher: BPB Publications
Edition: 2nd Edition
ISBN: 9789387284904
Solutions Book:
4. Title: Let Us C++ Solutions
Author: YashavantKanetkar
Publisher: BPB Publications
Edition: 1st Edition ISBN: 9789387284911
| |
Evaluation Pattern Total Credits=1 Overall CIA=50 Marks. | |
RM431P - EMBEDDED SYSTEMS (2023 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
At the end of the course, the students would be able to 1. To provide the overview of embedded system design principles 2. To understand the concepts of real time operating systems 3. To provide exposure to embedded system development tools with hands-on experience in using basic programming techniques. |
|
Learning Outcome |
|
CO1: Explain the architecture, Instruction set and addressing modes of PIC and Motorola(68HC12) microcontroller (L2) CO2: Summaries the concepts of embedded C programming (L3) CO3: Explain the need of embedded systems and their development procedures. (L2) CO4: Summaries the uses of embeded system in Automotive electronics.(L2) CO5: Summaries the concepts involved in Real time operating systems. L2) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MICROCONTROLLERS
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8051 microcontroller, PIC microcontroller- Architecture - Instruction set - Addressing modes - Timers - Interrupt logic - Introduction to Motorola 68HC12 microcontroller. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EMBEDDED C PROGRAMMING
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Interfacing of peripherals Using Microcontrollers, Introduction to embedded c programming, Embedded System design examples, Introduction of ARM subsystem design, Case study | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EMBEDDED SYSTEM
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Overview of embedded systems- embedded system design process- challenges - -Hardware and Software co design- Embedded Buses( CAN BUS - I2C - GSM - GPRS - Zig bee)- Case study | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS & SAFETY
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applications of Embedded Systems & Signal Data Processing in Automotive Electronics; Engine Management System; Dashboard Instruments; Driver Assistive Systems, Role of Internet of Things (IOT), Case Study( Control of Airbags, Seat Belts etc.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
REAL TIME OPERATING SYSTEM
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Real time operating systems Architecture - Tasks and Data - Semaphore and shared data - Message queues, mail boxes and pipes - Encapsulating semaphores and queues - interrupt routines in an RTOS Environment. Introduction to Vx works, RT Linux. Case study | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Frank Vahid, Tony John Givargis, Embedded System Design: A Unified Hardware/ Software Introduction - Wiley & Sons, Inc. 2002 . T2. Rajkamal, ‘Embedded System – Architecture, Programming, Design’, Tata Mc Graw Hill, 2011 T3. John B. Peatman, “Design with PIC Microcontrollers” Prentice Hall, 2003. T4: Danny Causey, Muhammad Ali Mazidi, and Rolin D. McKinlay”PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18” T5: H. P. Garg, Maintenance Engineering, S. Chand and Company. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Steve Heath, ‘Embedded System Design’, II edition, Elsevier, 2003. R2. David E. Simon, “An embedded software primer”, Addison – Wesley, Indian Edition Reprint (2009). R3. Robert Foludi “Building Wireless Sensor Networks”, O’Reilly, 2011. R4. Marwedel, Peter, “EMBEDDED SYSTEM DESIGN”, London Springer International 2003, ISBN:9788181284334 R5: Higgins & Morrow, Maintenance Engineering Handbook, Da Information Services. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM432P - SOLID AND FLUID MECHANICS (2023 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
At the end of the course the students should be able to appreciate the basic principles and understand the function of various type of pumps and machineries and flow of liquid through pipes. Basics of Engineering elements like springs and beams must have bean made clear so that they will be able to design them. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Describe the fundamental concepts of equilibrium, stress, strain and deformation of solids. (L2) CO-2: Discusses the bending of beams and torsion. (L2) CO-3: Defines the fluid concepts, properties, statics and kinematics. (L2) CO-4: Explain and calculate the fluid dynamics and in-compressible fluid flow. (L2) CO-5: Defines and discusses the hydraulic turbines and pumps. (L2) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Equilibrium, Stress, Strain And Deformation Of Solids
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Deformation in Solids, stress, strain, Hooke’s law, Elastic constants, Stress Strain curve for ductile and brittle materials, Principle of super position, Shear stresses Compound Stresses and Strains - Two-dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bending Of Beams And Torsion
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Beams – Types and transverse loading on beams – shear force and bending moment in beams – Cantilevers – Simply supported beams and over-hanging beams. Theory of simple bending – Analysis of stresses – load carrying capacity. Bending and shear stress for I and T section. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Concepts, Properties, Statics And Kinematics
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid – definition, real and ideal fluids - Distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, viscosity, capillary and surface tension, compressibility and vapour pressure – Temperature influence on fluid properties - Fluid statics – hydrostatic pressure concept and distribution on plane surfaces – Absolute and gauge pressures – pressure measurements by manometers and pressure gauges | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics and Dynamics
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics - Flow visualization - types of flow – lines of flow - velocity field and acceleration. Fluid dynamics – Euler’s equation of motion – Euler’s equation of motion along a streamline – Bernoulli equation and its application – Venturi, orifice and flow nozzle meters – pitot tube – notches and weirs | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hydraulic Turbines And Pumps
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to types of hydraulics turbine, Pelton wheel, Francis Hydro turbines - definition, types and classifications – Pelton, Francis and Kaplan turbines. Introduction to pumps and blowers reciprocating type, centrifugal and axial type. Postive displacement pumps and blower | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Junarkar S.B, ‘Mechanics of Structures’, Vol. 1, 21ST edition, Charotar Publishing House, Anand, India, 1995. T2. Kazimi S.M.A., ‘Solid Mechanics’, Tata McGraw Hill Publishing Company, New Delhi, 1981. T3. Kumar, K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd, New Delhi (7th edition), 1995. T4. Bansal, R.K.,"Fluid Mechanics and Hydraulics Machines", (5th edition), Laxmi publications (P) Ltd, New Delhi, 1995 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. William A.Nash, Theory and problems of strength of materials, Schaum’s Outline Series, McGraw-Hill International Editions, Third Edition, 1994 R2. Streeter, V.L., and Wylie, E.B.,"Fluid Mechanics", McGraw-Hill, 1983. R3. White, F.M.,"Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi, 2003. R4. Som, S.K., and Biswas, G.,"Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, 2nd Edition, 2004. R5. Bhavikatti, S S, Kothandaraman, C P, “SOLID AND FLUID MECHANICS”, New Delhi New Age Internations (P) Ltd 2009. R6. Bullett, Shaun, “FLUID AND SOLID MECHANICS: LTCC ADVANCE MATHEMATICS SERIES - VOLUME 2”, London; World Scientific, 2016. R7. Hariri Asli, Kaveh, “HANDBOOK OF RESEARCH FOR FLUID AND SOLID MECHANICS: THEORY, SIMULATION, AND EXPERIMENT”, New York: CRC Press, 2018. R8. Barenblatt, G. I. Barenblatt G.I, “FLOW, DEFORMATION AND FRACTURE: LECTURES ON FLUID MECHANICS AND THE MECHANICS OF DEFORMABLE SOLIDS FOR MATHEMATICIANS AND PHYSICISTS”, New York: Cambridge University Press, 2014. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM433 - KINEMATICS AND THEORY OF MACHINES (2023 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. To understand the kinematics and rigid-body dynamics of kinematically driven machine components. 2. To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link. 3. To be able to design some linkage mechanisms and cam systems to generate specified output motion. 4. To understand the kinematics of gear trains.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Summarize the fundamentals of kinematics and Planar mechanisms. CO-2: Analyse velocity and acceleration parameters in various four-bar mechanisms using the instantaneous centre method and relative velocity method. CO-3: Develop the displacement diagram for a required output and design cam profiles for inline and offset followers. CO-4: Explain the fundamentals of gear profiles and extrapolate various parameters of Spur gear teeth. CO-5: Design gear trains for power transmission. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Classification of mechanisms
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashoff’s law, Kinematic inversions of four bar chain and slider crank chains-Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Velocity and acceleration
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Coriolis component of acceleration- introduction to linkage synthesis-three position graphical synthesis for motion and path generation | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
CAMS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Classification of cams and followers- Terminology and definitions- Displacement diagrams-Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Gears
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Friction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication-friction clutches- belt and rope drives- friction in brakes | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988. T2. Ratan.S.S, “Theory of Machines”, 4th Edition, Tata McGraw Hill Publishing company Ltd. 2014. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005. R2. CleghornW.L. , Mechanisms of Machines, Oxford University Press, 2005. R3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.
Online Resources W1. https://nptel.ac.in/courses/112104121/ | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM434P - INDUSTRIAL ROBOTICS (2023 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Identify the parts of a robot and explain the different control drive systems. (L2) CO-2: Develop the transformation matrices and trajectory path of a robot. (L3) CO-3: Explain the real time cycle and interference of a robot. (L2) CO-4: Describe the kinematics and dynamic behaviour of robots and its programming. (L2) CO-5: Appraise the emerging technologies in the field of robotics. (L2) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic Concepts
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History - Robot definitions - Robot anatomy - Specifications of Robots – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot. Kinematics: Forward and inverse kinematics, Precision movement, robot specifications and Work volume, End Effectors: Grippers, tools, selection of grippers and tools. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot Control and Drives
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Types of Robot drives. Drives: Pneumatic, Hydraulic, Electric actuators, Comparison. Basic robot motions, Point to point control, continuous path control. Robot control, unit control system concept, servo and non, servo control of robot joints, adaptive and optimal control. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mathematical Representation
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Types of Joints, Representation of Links using Denvit-Hartenberg Parameters, Link transformation matrices, Transformation matrices of 3R manipulator, PUMA560 manipulator, SCARA manipulator. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Trajectory Planning
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Joint space schemes, cubic trajectory, Joint space schemes with via points, Cubic trajectory with a via point, Third order polynomial trajectory planning, Linear segments with parabolic blends, Cartesian space schemes, Cartesian straight line and circular motion planning., Rotational transformation, Jacobians. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot Cell Design
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot work cell design and control, Safety in Robotics, Robot cell layouts, safety considerations. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot Interference
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robots and machine interference, Robot cycle time analysis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot Programming
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Robot language classification, programming methods, off and on line programming, Robot Operating System (ROS), Robotic Process Automation (RPA). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Simple Programs
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lead through method, Teach pendent method, Introduction to various types such as VAL, RAIL, AML, simple program. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent Developments in Robotics
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Swarm bots, Underwater Robots, Mobile robot, Medical Robots, Soft Robots, Collaborative Robots, Cloud Robots, Micro robots, Tele Robots, AGVs, Underwater Robots, Robotics and AI, Economic and Social Aspects of Robots. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Industrial Applications
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Application of robots, Material handling, Machine loading and unloading, Assembly, Inspection, Welding, Spray painting, Consumer Applications. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Craig.J.J, “Introduction to Robotics mechanics and control”, Pearson Education, 2017.ISBN-13: 978-0133489798 T2. Koubaa A., “Robot Operating System: The Complete Reference”, Springer, 2021.ISBN-13: 978-3319260525. T3. Ghosal A., “Robotics: Fundamental Concepts and Analysis”, Oxford,2016.ISBN-13: 978-0195673913 T4. Niku, S. B., “Introduction to Robotics Analysis, Systems”, Applications, 2nd edition, Pearson Education, 2010. ISBN-13: 978-0130613097. T5. Gupta.A.K, Arora. S. K., Industrial Automation and Robotics, Mercury Learning and Information, 2017. ISBN-13: 978-1938549304. T6. Odrey N., Weiss M., Groover M., Nagel R., Dutta A., Industrial Robotics -Technology ,Programming and Applications (SIE), McGraw Hill, 2017. ISBN-13: 978-1259006210. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Fu K.S, Gonzalez.R.C,& Lee, C.S.G, “Robotics control, sensing, vision and intelligence”, McGraw Hill Book Co., Singapore, Digitized 2010. ISBN-13: 978-0070226258 R2. Deb .S.R, “Robotics technology and flexible automation”, Tata McGraw Hill publishing company limited, New Delhi, 2010. ISBN: 9780070077911. R3. Miller M.R., Miller M., “Robots and Robotics: Principles, Systems, and Industrial Applications,” McGraw Hill, 2017. ISBN: 9781259859786. R4. Low K.H., Industrial Robotics: Programming, Simulation and Applications, InTech Open, 2006. ISBN: 3-86611-286-6. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CEOE561E01 - SOLID WASTE MANAGEMENT (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective of this paper is to provide managing solid wastes. It is designed as a source of information on solid waste management, including the Principles of Solid waste management, Processing and Treatment, Final disposal, Recycle and Reuse. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Identify characteristics and Functional elements of solid waste management (L2, L3) CO2: Develop different methods of solid waste collection and transportation systems. (L2, L3) CO3: Explain different solid waste treatment and processing techniques. (L2) CO4: Explain sanitary landfill and different composting techniques. (L2) CO5: Understand the different disposal methods, significance of recycling, reuse and reclamation of solid wastes. (L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sources
|
|||||||||||||||||||||||||||||||
Classification and characteristics – municipal, commercial and industrial. Methods of quantification | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sources
|
|||||||||||||||||||||||||||||||
Classification and characteristics – municipal, commercial and industrial. Methods of quantification | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sources
|
|||||||||||||||||||||||||||||||
Classification and characteristics – municipal, commercial and industrial. Methods of quantification | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Collection and Transportation
|
|||||||||||||||||||||||||||||||
Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Collection and Transportation
|
|||||||||||||||||||||||||||||||
Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Collection and Transportation
|
|||||||||||||||||||||||||||||||
Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
INCINERATION
|
|||||||||||||||||||||||||||||||
Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
TREATMENT/PROCESSING TECHNIQUES
|
|||||||||||||||||||||||||||||||
Components separation, volume reduction, size reduction, chemical reduction and biological processing problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
INCINERATION
|
|||||||||||||||||||||||||||||||
Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
TREATMENT/PROCESSING TECHNIQUES
|
|||||||||||||||||||||||||||||||
Components separation, volume reduction, size reduction, chemical reduction and biological processing problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
INCINERATION
|
|||||||||||||||||||||||||||||||
Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
TREATMENT/PROCESSING TECHNIQUES
|
|||||||||||||||||||||||||||||||
Components separation, volume reduction, size reduction, chemical reduction and biological processing problems. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
COMPOSTING
|
|||||||||||||||||||||||||||||||
Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
SANITARY LAND FILLING
|
|||||||||||||||||||||||||||||||
Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
COMPOSTING
|
|||||||||||||||||||||||||||||||
Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
SANITARY LAND FILLING
|
|||||||||||||||||||||||||||||||
Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
COMPOSTING
|
|||||||||||||||||||||||||||||||
Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
SANITARY LAND FILLING
|
|||||||||||||||||||||||||||||||
Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
DISPOSAL METHODS
|
|||||||||||||||||||||||||||||||
Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RECYCLE AND REUSE
|
|||||||||||||||||||||||||||||||
Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
DISPOSAL METHODS
|
|||||||||||||||||||||||||||||||
Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RECYCLE AND REUSE
|
|||||||||||||||||||||||||||||||
Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
DISPOSAL METHODS
|
|||||||||||||||||||||||||||||||
Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RECYCLE AND REUSE
|
|||||||||||||||||||||||||||||||
Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. | |||||||||||||||||||||||||||||||
Text Books And Reference Books: Bhide and Sunderashan “Solid Waste Management in developing countries”, Tchobanoglous “Integrated Solid Waste Management”,Mc Graw Hill. | |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Peavy and Tchobanoglous“Environmental Engineering”, Garg S K “Environmental Engineering”, Vol II “Biomedical waste handling rules – 2000”. Pavoni J.L. “Hand book on Solid Waste Disposal” | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CEOE561E02 - DISASTER MANAGEMENT (2022 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Course would help to understand the scope and relevance of Multi Disciplinary approach in Disaster Management in a dynamic world and to realize the responsibilities of individuals and institutions for effective disaster response and disaster risk reduction |
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO-1: Explain Hazards and Disasters (L2, PO 4) CO-2: Assess managerial aspects of Disaster Management, plan and explain risk analysis (L3, PO5) CO-3: Relate Disasters and Development (L4, PO7) CO-4: Compare climate change impacts and develop scenarios (L5, PO6) CO-5: Categorize policies and institutional mechanisms in Disaster Management and the impacts on society (L5, PO7) |
Unit-1 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Introduction to Hazard and Disasters
|
||||||||||||||||||||||||||||||||||||
Principles of Disaster Management, Hazards, Risks and Vulnerabilities; Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Introduction to Hazard and Disasters
|
||||||||||||||||||||||||||||||||||||
Principles of Disaster Management, Hazards, Risks and Vulnerabilities; Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Introduction to Hazard and Disasters
|
||||||||||||||||||||||||||||||||||||
Principles of Disaster Management, Hazards, Risks and Vulnerabilities; Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Disaster Management Cycle and Humanitarian Logistics
|
||||||||||||||||||||||||||||||||||||
Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Disaster Management Cycle and Humanitarian Logistics
|
||||||||||||||||||||||||||||||||||||
Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Disaster Management Cycle and Humanitarian Logistics
|
||||||||||||||||||||||||||||||||||||
Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Natural resources and Energy sources
|
||||||||||||||||||||||||||||||||||||
Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Natural resources and Energy sources
|
||||||||||||||||||||||||||||||||||||
Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Natural resources and Energy sources
|
||||||||||||||||||||||||||||||||||||
Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Global Environmental Issues
|
||||||||||||||||||||||||||||||||||||
Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFC‟s and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Global Environmental Issues
|
||||||||||||||||||||||||||||||||||||
Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFC‟s and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Global Environmental Issues
|
||||||||||||||||||||||||||||||||||||
Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFC‟s and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Development
|
||||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries. Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management. Technical Tolls for Disaster Management: Monitoring, Management program for disaster mitigation ; Geographical Information System(GIS) ; Role of Social Media in Disaster Management | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Development
|
||||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries. Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management. Technical Tolls for Disaster Management: Monitoring, Management program for disaster mitigation ; Geographical Information System(GIS) ; Role of Social Media in Disaster Management | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Development
|
||||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries. Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management. Technical Tolls for Disaster Management: Monitoring, Management program for disaster mitigation ; Geographical Information System(GIS) ; Role of Social Media in Disaster Management | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
T1. Paul, B.K, “Environmental Hazards and Disasters: Contexts, Perspectives and Management”, Wiley-Blackwell, 2011. (Unit 1 – Chapter 1; Unit 2 – Chapter 1, 3; Unit 3 – Chapter 4; Unit 4 – Chapter 5 & 6) T2. Keller, Edward, and Duane DeVecchio. “Natural hazards: earth's processes as hazards, disasters, and catastrophe”s. Pearson Higher Education AU, 2015. (Unit 5 – Chapter 6 & 7) | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Coppola, D, “Introduction to International Disaster Management “Elsevier, 2015.
R2. Fookes, Peter G., E. Mark Lee, and James S. Griffiths. "Engineering geomorphology: theory and practice." Whittles Publications, 2007.
R3. Tomasini, R. And Wassanhove, L.V (2009). Humanitarian Logistics. Pangrave Macmillan. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
IC521 - INDIAN CONSTITUTION (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:15 |
No of Lecture Hours/Week:1 |
|||||||||||||||||||||||||||||||||||
Max Marks:0 |
Credits:0 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
It create awareness on the rights and responsibilities as a citizen of India and to understand the administrative structure, legal system in Inida. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: To understand constitutional provisions and responsibilities CO2: To understand the administrative powers and legal provisions |
Unit-1 |
Teaching Hours:3 |
Making of the Constitution and Fundamental Rights
|
|
Introduction to the constitution of India, the preamble of the constitution, Justice, Liberty, equality, Fraternity, basic postulates of the preamble Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies | |
Unit-1 |
Teaching Hours:3 |
Making of the Constitution and Fundamental Rights
|
|
Introduction to the constitution of India, the preamble of the constitution, Justice, Liberty, equality, Fraternity, basic postulates of the preamble Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies | |
Unit-1 |
Teaching Hours:3 |
Making of the Constitution and Fundamental Rights
|
|
Introduction to the constitution of India, the preamble of the constitution, Justice, Liberty, equality, Fraternity, basic postulates of the preamble Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies | |
Unit-2 |
Teaching Hours:3 |
Directive Principles of State Policy and Fundamental Duties
|
|
Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and main duties of a citizen in India | |
Unit-2 |
Teaching Hours:3 |
Directive Principles of State Policy and Fundamental Duties
|
|
Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and main duties of a citizen in India | |
Unit-2 |
Teaching Hours:3 |
Directive Principles of State Policy and Fundamental Duties
|
|
Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and main duties of a citizen in India | |
Unit-3 |
Teaching Hours:3 |
Union Government and Union Legislature
|
|
the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function | |
Unit-3 |
Teaching Hours:3 |
Union Government and Union Legislature
|
|
the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function | |
Unit-3 |
Teaching Hours:3 |
Union Government and Union Legislature
|
|
the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function | |
Unit-4 |
Teaching Hours:3 |
Indian Judiciary
|
|
Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism | |
Unit-4 |
Teaching Hours:3 |
Indian Judiciary
|
|
Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism | |
Unit-4 |
Teaching Hours:3 |
Indian Judiciary
|
|
Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism | |
Unit-5 |
Teaching Hours:3 |
State Government and Elections in India
|
|
State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency | |
Unit-5 |
Teaching Hours:3 |
State Government and Elections in India
|
|
State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency | |
Unit-5 |
Teaching Hours:3 |
State Government and Elections in India
|
|
State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency | |
Text Books And Reference Books: B R Ambedkar, ‘The Constitution of India’. Government of India | |
Essential Reading / Recommended Reading Durga Das Basu, Introduction to the Constitution of India, LexisNexis, 24th edition | |
Evaluation Pattern Only class evaluations and discussions | |
MAHO531DMP - REVERSE ENGINEERING (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
Courseobjectives: • Understand the concept of reverse engineering • Understand principles of imaging, cross-sectional scanning, digital data, computational graphics
• Understand the legality of the reverse engineering concept |
|
Learning Outcome |
|
CO1: Use the Digitized Shape Editor (DSE) workbench. (L3) CO2: Import and process the digitized data (scans or clouds of points), {L3} CO3: Quick Surface Reconstruction (QSR) from the digitized data. {L3} CO4: Create a mesh and extract characteristic curves to create surfaces using point cloud data.{ L3} CO5: Determine the legalities of reverse engineered products and designs. {L2} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Tools and Techniques for RE
|
|||||||||||||||||||||||||||||||
Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Tools and Techniques for RE
|
|||||||||||||||||||||||||||||||
Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Tools and Techniques for RE
|
|||||||||||||||||||||||||||||||
Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RP Technology
|
|||||||||||||||||||||||||||||||
Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RP Technology
|
|||||||||||||||||||||||||||||||
Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RP Technology
|
|||||||||||||||||||||||||||||||
Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
REVERSE ENGINNERING AND REUSE
|
|||||||||||||||||||||||||||||||
Cognitive approach to RE, Integration of formal and structured methods in reverse engineering, Integration of reverse engineering and reuse. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
REVERSE ENGINNERING AND REUSE
|
|||||||||||||||||||||||||||||||
Cognitive approach to RE, Integration of formal and structured methods in reverse engineering, Integration of reverse engineering and reuse. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
REVERSE ENGINNERING AND REUSE
|
|||||||||||||||||||||||||||||||
Cognitive approach to RE, Integration of formal and structured methods in reverse engineering, Integration of reverse engineering and reuse. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Copyright laws
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Copyright laws
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Copyright laws
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Text Books: 1. Product Design: Techniques in Reverse Engineering and New Product Development by K. Otto and K. Wood Prentice Hall, 2001. 2. Reverse Engineering: An Industrial Perspective by Raja and Fernandes. Springer-Verlag 2008
3. Reverse Engineering in Computer Applications. MIT Lecture Notes 2001
| |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
MAHO582DMP - PROJECT (2022 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Project work Phase-I includes identifying the problem, literature review and necessary ground work so as to continue it as Phase-II during VIII semester. Presentations on these are to be given as per the schedule announced by the department. |
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2] CO 2: Develop a skill for handling multiple situations, practical problems, analyzing teamwork and communication abilities. [L2] CO 3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L3] CO4: Analyze the work environment and create solutions to problems. [L4] CO5: Build a record of work experience and construct a good relationship with the teammates. [L5] |
Unit-1 |
Teaching Hours:60 |
Project
|
|
Continuous Internal Assessment:50 Marks
| |
Unit-1 |
Teaching Hours:60 |
Project
|
|
Continuous Internal Assessment:50 Marks
| |
Unit-1 |
Teaching Hours:60 |
Project
|
|
Continuous Internal Assessment:50 Marks
| |
Text Books And Reference Books: Journals | |
Essential Reading / Recommended Reading Journals | |
Evaluation Pattern Project progress report 50 Marks VIVA 50 Marks
| |
MAOE561E01 - APPLIED STATISTICS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
To enable the students to describe the fundamentals of statistics, estimate best fit curve, correlation and regression through data analysis, develop a deep understanding of axioms, random variables and probability functions, test the hypothesis for small and large samples by various statistical tools. |
|
Learning Outcome |
|
CO1: Determine the mean, median, mode and expectation by using the fundamentals of statistics. CO2: Estimate the best fit curve, correlation and regression through data analysis. CO3: Determine the probability density function of discrete and continuous random variables by applying the key concepts of probability. CO4: Calculate the mean, variance and probability density function of different theoretical distribution. CO5: Test the hypothesis of small and large samples using various statistical tools. |
Unit-1 |
Teaching Hours:9 |
||||||||||
Probability
|
|||||||||||
Fundamentals of Statistics, Mean, median, mode, expectation. | |||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||
Probability
|
|||||||||||
Fundamentals of Statistics, Mean, median, mode, expectation. | |||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||
Probability
|
|||||||||||
Fundamentals of Statistics, Mean, median, mode, expectation. | |||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||
Probability
|
|||||||||||
Fundamentals of Statistics, Mean, median, mode, expectation. | |||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||
Curve Fitting
|
|||||||||||
Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression | |||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||
Curve Fitting
|
|||||||||||
Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression | |||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||
Curve Fitting
|
|||||||||||
Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression | |||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||
Curve Fitting
|
|||||||||||
Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Random Variable
|
|||||||||||
Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance. | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Random Variable
|
|||||||||||
Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance. | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Random Variable
|
|||||||||||
Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance. | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Random Variable
|
|||||||||||
Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance. | |||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||
Sampling
|
|||||||||||
Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions. | |||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||
Sampling
|
|||||||||||
Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions. | |||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||
Sampling
|
|||||||||||
Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions. | |||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||
Sampling
|
|||||||||||
Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions. | |||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||
Testing Tools
|
|||||||||||
Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools | |||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||
Testing Tools
|
|||||||||||
Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools | |||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||
Testing Tools
|
|||||||||||
Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools | |||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||
Testing Tools
|
|||||||||||
Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools | |||||||||||
Text Books And Reference Books: T1. Ross, S., “A first course in probability”, 9th Edition, Pearson Education, Delhi, 2012. T2. T. Veerarajan, “Probability, Statistics and Random process”, 3rd Edition, Tata McGraw Hill, New Delhi, 2008. | |||||||||||
Essential Reading / Recommended Reading Allen., A.O., “Probability, Statistics and Queuing Theory”, Academic press, New Delhi, 1981. | |||||||||||
Evaluation Pattern Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks) End Semester Examination(ESE) : 50% (50 marks out of 100 marks)
| |||||||||||
MICSAI533 - FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (2022 Batch) | |||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:5 |
||||||||||
Max Marks:100 |
Credits:4 |
||||||||||
Course Objectives/Course Description |
|||||||||||
This course provides a strong foundation of fundamental concepts in Artificial Intelligence. To provide a basic exposition to the goals and methods and to enable the student to apply these techniques in applications which involve perception, reasoning and learning. |
|||||||||||
Learning Outcome |
|||||||||||
CO1: Study the basic concepts of Artificial Intelligence and Production Systems CO2: Learn about knowledge representation and inferencing for various logic CO3: Know about Game Playing concepts for toy problems CO4: Introduce the concepts of Learning. |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-1 |
Teaching Hours:12 |
INTRODUCTION
|
|
Intelligent Agents – Agents and environments - Good behavior – The nature of environments – structure of agents - Problem Solving - problem solving agents – example problems – searching for solutions – uniformed search strategies - avoiding repeated states – searching with partial information. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-2 |
Teaching Hours:12 |
SEARCHING TECHNIQUES
|
|
Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first
9H+6H
search-A* Algorithms. local search algorithms and optimization problems –Hill- climbing Search, Simulated annealing, Local beam Search, Genetic algorithm - Searching with partial observations - Online Search Agents and Unknown Environment. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-3 |
Teaching Hours:12 |
GAME PLAYING AND CSP
|
|
Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning –imperfect real-time decision –Stochastic Games. Constraint Satisfaction Problem (CSP): Definition - Constraint propagation - Backtracking search - Local Search -The Structure of problems. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-4 |
Teaching Hours:12 |
KNOWLEDGE REPRESENTATION
|
|
First order logic – representation revisited – Syntax and semantics for first order
6H+2H
logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects. | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Unit-5 |
Teaching Hours:12 |
LEARNING
|
|
Learning from Examples : Forms of Learning - Supervised learning - Learning Decision Trees - Regression and classification with linear models, Artificial Neural Network. Knowledge in Learning : Logical formulation of learning – Explanation based learning – Learning using relevant information – Inductive logic programming. Statistical learning- Learning with complete data - Learning with hidden variable | |
Text Books And Reference Books: 1. Stuart Russell and Peter Norvig, “Artificial Intelligence – A Modern Approach”, 4th Edition, Pearson Education, 2020. 2. Elaine Rich; Kevin Knight; Shivashankar B Nair, “Artificial Intelligence”, 3rd Edition, Tata McGraw- Hill, 2019. | |
Essential Reading / Recommended Reading 1. Nils J. Nilsson, “Artificial Intelligence: A New Synthesis”, 1st Edition, Harcourt Asia Pvt. Ltd., 2012. 2. George F. Luger, “Artificial Intelligence-Structures and Strategies for Complex Problem Solving”, 6th Edition, Pearson Education / PHI, 2009. 3. M. Tim Jones, ―Artificial Intelligence: A Systems Approach (Computer Science), Jones and Bartlett Publishers, Inc.; First Edition, 2008 4. Gerhard Weiss, ―Multi Agent Systems‖, Second Edition, MIT Press, 2013. 5. David L. Poole and Alan K. Mackworth, ―Artificial Intelligence: Foundations of Computational Agents‖, Cambridge University Press, 2010. | |
Evaluation Pattern CIA 1 -20 CIA 2 - 50 CIA3 -20 | |
NCCOE01 - NCC1 (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
· This Course is offered for cadets of NCC who have successfully completed their B- Certificate and Who are eligible for B Certificate. · This Course is offered for the NCC cadets in the Open Elective course offered by the department during the 5th Semester. |
|
Learning Outcome |
|
CO 1: Interpret the fundamentals of NCC and National Integration CO 2: Demonstrate the fundamentals of Foot drill and Rifle Drill CO 3: Relate to the Social need and discover Rural development progrms CO 4: Illustrate the Factors in personality Development through skill enhancement CO 5: Summarize disasters and summarize various First aid |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-1 |
Teaching Hours:9 |
Introduction to NCC
|
|
The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-2 |
Teaching Hours:9 |
Drill
|
|
Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching. Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-3 |
Teaching Hours:9 |
Social Services
|
|
Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-4 |
Teaching Hours:9 |
Personality Development
|
|
Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Unit-5 |
Teaching Hours:9 |
Disaster Management, Health and Hygiene
|
|
Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound. | |
Text Books And Reference Books: 1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. 2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | |
Essential Reading / Recommended Reading As instructuted by commdant | |
Evaluation Pattern The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following. · Each cadet will appear for ‘B’ Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350. Cadets who are eligible for 'B' Certificate, will be evaluated based on Written Exams(50marks), Contribution to NCC(30marks),Camps(20Marks). · Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet. | |
RM531P - DATA ACQUISITION AND ROBOTIC VISION (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
Course objectives: At the end of the course, the students would be able ● To deal with basics concepts for selection of sensors and the signal conditioning necessary to include these in a data acquisition system. ● To investigate the analogue to digital and digital to analogue conversion principles and their practical applications for data acquisition and control. ● To learn about the selection of output drivers and devices To learn about the machine vision systems and its application
|
|
Learning Outcome |
|
CO1: Represent the equivalent circuit of sensors and describe their significant properties (L2). CO2: Choose the type of signal conditioning circuits to be used for a specific sensor.(L3). CO3: Discuss the data conversion circuits and the constraints involved in their design.(L3) CO4: Examine the requirements for interfacing circuit design.(L3) CO5: Develop simple working model of a complete data acquisition system.(L2). |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Data Acquisition
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Overview of data acquisition systems, Types of sensors used in data acquisitionSignal conditioning and amplification, Sampling theorem and analog-to-digital conversion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensors for Robotic Vision
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Signal conditioning: Amplification, Impedance Matching, Instrumentation Amplifiers, Charge Amplifiers, Filtering, attenuation, Noise Reduction and Isolation – Grounding Conflict, Ground Loops, Cross Talk, Shielded Wiring, Isolation, Linearization, Circuit protection. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data Acquisition Techniques
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wired and wireless communication protocols, Synchronization and data fusion, Calibration techniques for sensor alignment and accuracy, Real-time data acquisition considerations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Image Processing Fundamentals
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Image representation and formats, Image enhancement techniques, Image segmentation and feature extraction, Object detection and recognition, Introduction to machine learning for vision tasks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Integration of Data Acquisition and Robotic Vision
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensor integration with robotic platforms, Sensor fusion for multi-modal perception Closed-loop control using sensor feedback Case studies: Automated Navigation guidance by vision system – vision based de palletizing- line tracking-. Automatic part Recognition., Autonomous Navigation with Digital Twin | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Bentley, John P. Principles of Measurement Systems, 4:th edition, Pearson/Prentice Hall, 2005. T2. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, Machine Vision, Tata McGraw Hill, 1991. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1.1. Jacob Fraden, Handbook of Modern Sensors – Physics, Design and Applications, Fourth Edition, Springer, 2010. R2. 2. Data Acquistion Handbook, A Reference for DAQ and analog and digital signal conditioning, 3rd Edition, 2012. R3. Fu K S, Gonzalez R C, Lee C.S.G, Robotics: Control, Sensing, Vision and Intelligence, McGraw Hill, 1987. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM532P - FLUID POWER AUTOMATION (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
At the end of the course, the students would be able 1. To familiarize with the basic concepts of industrial automation. 2. To acquaint with the concept of low cost automation with pneumatic and hydraulic systems. 3. To familiarize with the elements of electrical control systems. 4. To acquaint with the concepts related to fluid power. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Understanding the concept of fluid power generation. CO2: Illustrate the working principles of fluid power accessories like pumps, control valves and actuators. CO3: Develop hydraulic and pneumatic circuits for various applications CO4: Analyze hydraulic and pneumatic circuits for various applications CO5: Demonstrate the use of electrical and electronics control in pneumatic and hydraulic circuits. CO6: Design and trouble shoot hydraulic and pneumatic circuit for various applications |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction Fluid Power Generating/Utilizing Elements:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hydraulic pumps and motor, gears, vane, piston. Pumps & motors- selection and specification-Drive characteristics – Linear actuator – Types, mounting details, cushioning – power packs – construction. Reservoir capacity, heat dissipation, accumulators and their types. Applications of Accumulator circuits. Standard circuit symbols, circuit (flow) analysis. Different types of compressors and Actuators in Pneumatics, their applications and use of their ISO symbols. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Control Components In Hydraulic Systems:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, symbolic representation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Control Valves & Signal Processing Elements:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Speed control of cylinders - supply air throttling and Exhaust air throttling. Signal Processing Elements: Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependent controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circuit Design: Basic Hydraulic Circuits and Pneumatic Circuit Designing:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic Hydraulic Circuits: Meter in, meter out and Bleed off circuits; Intensifier circuits, Regenerative Circuit, Counter balance valve circuit and sequencing circuits. Pneumatic Circuit Designing: Design of Pneumatic sequencing circuits using Cascade method and Shift register method (up to 3 cylinders). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electro- Pneumatics and electro hydraulics:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Principles - signal input and output, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple Electro- Pneumatics and electro hydraulics application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing (3rd Edition), PHI Learning Private Limited, New Delhi, 2008. T2. Joji P., Pneumatic Controls, Wiley India Pvt. Ltd., 2008.
T3. Peter Croser, Frank Ebel, Pneumatics Basic Level, Festo Didactic GmbH & Co. Germany. Prede T4. G., Scholz D., Electropneumatics Basic Level, Festo Didactic GmbH & Co. Germany. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. S.Ilango and V. Soundararajan, Introduction to Hydraulics and Pneumatics, PHI Learning Pvt. Ltd. New Delhi. R2. Industrial Hydraulics Manual, Sperry & Vickers Co. R3. Shanmuga Sundaram.K, Hydraulic and Pneumatic controls, Chand& Co. 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
● Minimum marks required to pass in practical component is 40%. ● Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course. ● A minimum of 40 % required to pass in ESE -Theory component of a course. ● Overall 40 % aggregate marks in Theory & practical component, is required to pass a course. ● There is no minimum pass marks for the Theory - CIA component. ● Less than 40% in practical component is refereed as FAIL. ● Less than 40% in Theory ESE is declared as fail in the theory component.
● Students who failed in theory ESE have to attend only theory ESE to pass in the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM533 - DESIGN OF MACHINE ELEMENTS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
● The student shall gain appreciation and understanding of the design function in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity. ● The student shall be able to choose proper materials to different machine elements depending on their physical and mechanical properties. Thus he shall be able to apply the knowledge of material science in real life usage. ● Student shall gain a thorough understanding of the different types of failure modes and criteria. He will be conversant with various failure theories and be able to judge which criterion is to be applied in which situation. ● Student shall gain design knowledge of the different types of elements used in the machine design process. E.g., fasteners, shafts, couplings etc. and will be able to design these elements for each application. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Discuss the function of machine elements in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity. (L2) CO-2: Analyze the different types of failure modes and will be conversant with various failure theories and be able to judge which criterion is to be applied in which situation. (L2). CO-3: Apply the knowledge of the curved beams and cylinders in determining the stresses developed for its real time usage. (L3). CO-4: Select the type of spring required for the application and will be able to calculate dimensions of spring. (L3). CO-5: Design the different types of elements used in the machine design process. Eg. Riveted joint, Welded Joints etc. and will be able to design these elements for each application. (L3). |
Unit-1 |
Teaching Hours:9 |
Definitions:
|
|
Introduction: Normal, shear, biaxial and tri axial stresses, Stress tensor, Principal Stresses. Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards. | |
Unit-2 |
Teaching Hours:9 |
Design For Fatigue Strength:
|
|
Introduction- S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage. | |
Unit-2 |
Teaching Hours:9 |
Static Strength:
|
|
Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.
Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia. | |
Unit-3 |
Teaching Hours:9 |
Curved Beams:
|
|
Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links | |
Unit-3 |
Teaching Hours:9 |
Cylinders & Cylinder Heads:
|
|
Review of Lame’s Equations; compound cylinders, stresses due to different types of fits, cylinder heads, flats. | |
Unit-4 |
Teaching Hours:9 |
Design Of Springs:
|
|
Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs. Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs. | |
Unit-5 |
Teaching Hours:9 |
Riveted and Welded Joints
|
|
Types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, Eccentrically loaded welded joints. | |
Unit-5 |
Teaching Hours:9 |
Threaded Fasteners:
|
|
Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints. | |
Text Books And Reference Books: T1. Design of Machine Elements 1, K Raghavendra, CBS Publishers and Distributors Private Limited, New Delhi, 1nd Edition 2017. T2. Design of Machine Elements 2, K Raghavendra, CBS Publishers and Distributors Private Limited, New Delhi, 1nd Edition 2015. T3. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke, McGraw Hill International edition, 6th Edition 2009. T4. Design of Machine Elements, V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 3rd Edition first reprint 2010. | |
Essential Reading / Recommended Reading R1.Robert L. Norton, “Machine Design”, 3rd Impression, Pearson Education Asia, 2008. R2. M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, “Design of Machine Elements”, Special Indian Edition, Pearson Education, 2006. R3. Hall, Holowenko, Laughlin, “Machine Design”, Special Indian Edition, Schaum’s Outlines series, Tata McGraw Hill Publishing Company Ltd., 2010. R4. Robert C. Juvinall and Kurt M Marshek, “Fundamentals of Machine Component Design”, 5th Edition, Wiley India Pvt. Ltd., 2012. DESIGN DATA HANDBOOKS: 1. K. Lingaiah, “Design Data Hand Book”, 4th edition, McGraw Hill, 2013. 2. K. Mahadevan and Balaveera Reddy, “Design Data Hand Book”, 4th edition, CBS Publication, 2013. 3. H.G. Patil, Shri ShashiPrakashan, “Design Data Hand Book”, Belgaum. Reprint, I K International Publishing house, 2011 | |
Evaluation Pattern ASSESSMENT - ONLY FOR THEORY COURSE {without practical component} ● Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks} ● End Semester Examination{ESE} : 50% {50 marks out of 100 marks} Components of the CIA CIA I : Subject Assignments / Online Tests : 10 marks CIA II : Mid Semester Examination {Theory} : 25 marks CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications : 10 marks Attendance : 05 marks Total : 50 marks Mid Semester Examination {MSE} : Theory Papers: ● The MSE is conducted for 50 marks of 2 hours duration. ● Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks End Semester Examination {ESE}: The ESE is conducted for 100 marks of 3 hours duration. The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution. Question paper pattern is as follows. Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year. The criteria for drawing the questions from the Question Bank are as follows 50 % - Medium Level questions 25 % - Simple level questions 25 % - Complex level questions | |
RM544E1 - AUTONOMOUS VEHICLES (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The course should enable the students to: ● To understand the rational for and evolution of automotive electronics; ● To understand which automotive systems have been replaced by electronic control systems and the advantage of doing so; ● To understand the fundamental theory of operation of electronic control systems; ● To understand the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles;
● To understand the concept of remote sensing and the types of sensor technology needed to implement remote sensing |
|
Learning Outcome |
|
CO1: To illustrate modern vehicle display/cluster technology. (L2) CO2: To interpret possible evolution of vehicle prognostics and impaired driver technology. (L2) CO3: To understand the concept of fully autonomous vehicles. (L2) CO4: To apply the concepts of programming of ECUs. (L3) CO5: To understand the fundamental principles of data networking and its roll in ADAS and future autonomous vehicles (L2) |
Unit-1 |
Teaching Hours:9 |
Introduction to Automated, Connected, and Intelligent Vehicles
|
|
Introduction to the Concept of Automotive Electronics, Automotive Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Powertrain Electronics, Advanced Driver Assistance Electronic Systems | |
Unit-1 |
Teaching Hours:9 |
Connected and Autonomous Vehicle Technology
|
|
Basic Control System Theory applied to Automobiles, Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy, Role of Wireless Data Networks and Autonomy | |
Unit-2 |
Teaching Hours:9 |
Sensor Technology for Advanced Driver Assistance Systems
|
|
Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar Sensor Technology and Systems, Camera Technology, Night Vision Technology, Other Sensors, Use of Sensor Data Fusion, Integration of Sensor Data to On-Board Control Systems | |
Unit-2 |
Teaching Hours:9 |
Overview of Wireless Technology
|
|
Wireless System Block Diagram and Overview of Components, Transmission Systems – Modulation/Encoding, Receiver System Concepts – Demodulation/Decoding, Signal Propagation Physics, Basic Transmission Line and Antenna Theory | |
Unit-3 |
Teaching Hours:9 |
Connected Car Technology
|
|
Connectivity Fundamentals, Navigation and Other Applications, Vehicle-to-Vehicle Technology and Applications, Vehicle-to-Roadside and Vehicle-to-Infrastructure Applications, Wireless Security Overview | |
Unit-3 |
Teaching Hours:9 |
Wireless Networking and Applications to Vehicle Autonomy
|
|
Basics of Computer Networking – the Internet of Things, Wireless Networking Fundamentals, Integration of Wireless Networking and On-Board Vehicle Networks, Review of On-Board Networks – Use & Function | |
Unit-4 |
Teaching Hours:9 |
Advanced Driver Assistance System Technology
|
|
Basics of Theory of Operation, Applications – Legacy, New, Future, Integration of ADAS Technology into Vehicle Electronics, System Examples, Role of Sensor Data Fusion Electrical Systems | |
Unit-4 |
Teaching Hours:9 |
Impaired Driver Technology
|
|
Driver Impairment Sensor Technology, Sensor Technology for Driver Impairment Detection, Transfer of Control Technology | |
Unit-5 |
Teaching Hours:9 |
Driverless Car Technology
|
|
Moral, Legal, Roadblock Issues, Technical Issues, Security Issues Present Advanced Driver Assistance System Technology Examples • Toyota, Nissan, Honda, Hyundai • Volkswagen, BMW, Daimler • Fiat Chrysler Automobiles | |
Text Books And Reference Books: T1. Autonomous Vehicles, by Steven Van Uytsel, Edition: 1st Edition, 2021, Publisher: Springer T2. Autonomous Vehicles, Publisher, Nicu Bizon, Nova Science Publishers Inc, ISBN: 9781633213241, 9781633213241 | |
Essential Reading / Recommended Reading R1. G. Mullett, Wireless Telecommunications Systems and Networks, Thomson – Delmar Learning, ISNB#1-4018-8659-0,2006 R2. Autonomous Control Systems and Vehicles, Kenzo Nonami, Muljowiodo Kartidjo, Kwang-Joon Woon, Publisher: Springer Verlag, Japan, ISBN: 9784431542759, 9784431542759 R3. Automobile engineering, Kirpal Singh. Vol I and II 2002. | |
Evaluation Pattern ASSESSMENT - ONLY FOR THEORY COURSE {without practical component} ● Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks} ● End Semester Examination{ESE} : 50% {50 marks out of 100 marks} Components of the CIA CIA I : Subject Assignments / Online Tests : 10 marks CIA II : Mid Semester Examination {Theory} : 25 marks CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications : 10 marks Attendance : 05 marks Total : 50 marks Mid Semester Examination {MSE} : Theory Papers: ● The MSE is conducted for 50 marks of 2 hours duration. ● Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks End Semester Examination {ESE}: The ESE is conducted for 100 marks of 3 hours duration. The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution. Question paper pattern is as follows. Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year. The criteria for drawing the questions from the Question Bank are as follows 50 % - Medium Level questions 25 % - Simple level questions 25 % - Complex level questions | |
RM551 - MODELLING AND ANALYSIS LABORATORY (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:1 |
Course Objectives/Course Description |
|
At the end of the course, the students would be able to ● Simulation is used intensively in a field of design and development. ● Students will understand how to prepare the basic model and how to perform simulation on it by taking various assumption. ● Students can apply the knowledge they have obtained while studying FEM and Mechanical Vibration. |
|
Learning Outcome |
|
CO1: Exposed to use FEA softwares for modelling of machine components. (L2) CO2: Applying the boundary conditions on the given system. (L2) CO3: Solving Engineering Mechanics Problems by using Commercial FEM Tools. (L5) |
Unit-1 |
Teaching Hours:8 |
||||||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: R1. M. Asghar Bhatti, “FUNDAMENTAL Finite Element Analysis and Applications with Mathematica and MATLAB Computations”, Wiley India Pvt. Ltd. R2.Stormy Attaway, “Matlab: A Practical Introduction to Programming and Problem Solving”, 3rd edition, Butterworth-Heinemann Publisher. R3.W. Y. Yang and W. C. T.-S. Chung., Applied Numerical Methods Using Matlab, John Wiley & Sons, Inc., 2005 R4.S. J. Chapman, MATLAB programming for engineers, New Delhi: Cengage Learning, 2004 R5.K. B. Datta, Matrix And Linear Algebra Aided with Matlab, New Delhi: PHI Learning Private Limited, 2009 R6.M. P. Coleman, An introduction to partial differential equations with MATLAB, Boca Raton: CRC Press, 2005 | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. M. Asghar Bhatti, “FUNDAMENTAL Finite Element Analysis and Applications with Mathematica and MATLAB Computations”, Wiley India Pvt. Ltd. R2.Stormy Attaway, “Matlab: A Practical Introduction to Programming and Problem Solving”, 3rd edition, Butterworth-Heinemann Publisher. R3.W. Y. Yang and W. C. T.-S. Chung., Applied Numerical Methods Using Matlab, John Wiley & Sons, Inc., 2005 R4.S. J. Chapman, MATLAB programming for engineers, New Delhi: Cengage Learning, 2004 R5.K. B. Datta, Matrix And Linear Algebra Aided with Matlab, New Delhi: PHI Learning Private Limited, 2009
R6.M. P. Coleman, An introduction to partial differential equations with MATLAB, Boca Raton: CRC Press, 2005 | |||||||||||||||||||||||||||||
Evaluation Pattern
ASSESSMENT - ONLY FOR PRACTICAL COURSE ● Continuous Internal Assessment {CIA} : 50% {25 marks out of 50 marks} ● End Semester Examination{ESE} : 50% {25 marks out of 50 marks} | |||||||||||||||||||||||||||||
RM581 - MINI PROJECT (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
The mini project work extends for a single semester and exposes the student to develop and present his/her work related to specific topic. Student shall select the project topic in consultation with mentor/guide/supervisor to his/her area of specialization and work on it. Student will prepare a report outlining objective of the project work, importance of the study, review of literature published in the relevant field and possible areas for further work. The student shall present seminar on this report. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: Students will be able to apply the skill of presentation and communication techniques CO2: Students will be able to use their knowledge of the fundamentals of subjects to search the related literature CO3: Student will be able to analyze the available resources and to select most appropriate one CO4: Students will be able to apply a multidisciplinary strategy to address current, real world issues. |
Unit-1 |
Teaching Hours:60 |
Guidelines for Mini Project
|
|
1. Mini project should be based on thrust areas in robotics and Mechatronics Engineering 2. Students should do literature survey and identify the topic of the seminar/mini project and finalize in Consultation with Guide/Supervisor. 3. Students should use multiple literatures. | |
Text Books And Reference Books: The theme of the Project-related journal papers and reference books. | |
Essential Reading / Recommended Reading The theme of the Project-related journal papers and reference books. | |
Evaluation Pattern Overall-50marks | |
BTGE631 - CORPORATE SOCIAL RESPONSIBILITY (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
Course Description:
This course will familiarize the students with the concept of corporate social responsibility. The evolution of CSR has far reaching consequences on the development sector in India. The collaboration of companies and NGOs with the community has initiated a new paradigm of change in the country. The students will have an overview of the theories and the frameworks developed in the area of CSR. The paper will discuss a few prominent case studies of CSR. Course Objectives
|
|
Learning Outcome |
|
CO1: The students will be able to demonstrate their understanding in general on CSR. CO2: To exhibit their skill in executing the responsibilities and implementing different approaches in CSR. CO3: The students will be able to critically evaluate the CSR programs of a corporate |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-1 |
Teaching Hours:10 |
Corporate social responsibility
|
|
Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-2 |
Teaching Hours:10 |
Theories of CSR
|
|
A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000. Partnerships in CSR, Benefits of CSR to Business. | |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Unit-3 |
Teaching Hours:10 |
Emerging trends in CSR
|
|
Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.
| |
Text Books And Reference Books: T1. Agarwal, S. (2008). Corporate social responsibility in India. Los Angeles: Response. T2. Visser, W. (2007). The A to Z of corporate social responsibility a complete reference guide to concepts, codes and organizations. Chichester, England: John Wiley & Sons. T3. Werther, W., & Chandler, D. (2006). Strategic corporate social responsibility: Stakeholders in a global environment. Thousand Oaks: SAGE Publications. | |
Essential Reading / Recommended Reading R1. Crane, A. (2008). Corporate social responsibility: Readings and cases in a global context. London: Routledge. R2. Baxi, C. (2005). Corporate social responsibility: Concepts and cases: The Indian experience. New Delhi, India: Excel Books. Online Resources: M1. https://www.coursera.org/learn/global-sustainability-be-sustainable M2. https://www.coursera.org/learn/business-for-good-fundamentals-of-corporate-responsibility | |
Evaluation Pattern
| |
BTGE632 - DIGITAL MEDIA (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
This course provides students the insight on search engine optimization, social media and digital marketing techniques that helps them understand how each of the social media platforms works and how to strategize for any type of objectives from clients. Students will discover the potential of digital media space and will have hands on experience with different digital platforms. |
|
Learning Outcome |
|
CO1: Understand search engine optimization (SEO) techniques and principles. CO2: Gain expertise in managing and marketing on various social media platforms. CO3: Apply digital marketing techniques to achieve specific business objectives. |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-1 |
Teaching Hours:10 |
Concepts
|
|
Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-2 |
Teaching Hours:10 |
Marketing
|
|
Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Unit-3 |
Teaching Hours:10 |
Growth Hacking
|
|
Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project | |
Text Books And Reference Books: Phillip J. Windley, "Digital Identity" O'Reilly Media, 2005 | |
Essential Reading / Recommended Reading Dan Rayburn, Michael Hoch, "The Business of Streaming and Digital Media", Focal Press, 2005 | |
Evaluation Pattern
| |
BTGE633 - ESSENTIAL SOFT SKILLS FOR PROFESSIONAL SUCCESS (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
Course description: Essential Soft Skills for Professional Success consists of five units covering; Effective Communication for Personality, Critical Thinking for Problem Solving, Adaptability and Team Work, Time Management and Leadership skills, Empathy, Resilience and Stress Management. They will be explained followed by tasks/activities/case studies to strengthen the soft skills of the learners to develop their personality suitable for professional contexts. Course objectives: Course is designed to equip the learners with essential soft skills to ensure the necessary enrichment in the personality that contributes for professional and personal success. |
|
Learning Outcome |
|
CO1: Identify the difference between communication and effective communication and communicate effectively, efficiently and professionally. CO2: Use their critical thinking skills to solve complex problems in the professional and personal contexts. CO3: Adapt to new challenges, situations, tools, projects, be active in teams and collaborate with intra and inter disciplinary experts for professional success. CO4: Effectively manage time, guide, inspire and lead the members of the teams productively and successfully. CO5: Be empathetic towards colleagues, clients; resilient to the professional challenges and manage stress in the professional and personal contexts. |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-1 |
Teaching Hours:6 |
Effective Communication Skills for Personality
|
|
- Role of Effective communication skills for personality
| |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-2 |
Teaching Hours:6 |
Critical Thinking for Problem Solving
|
|
- Critically evaluate information | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-3 |
Teaching Hours:6 |
Adaptability and Team Work
|
|
- Adapt to new tools, methodologies | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-4 |
Teaching Hours:6 |
Time Management and Leadership skills
|
|
- The ability to prioritize tasks, | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Unit-5 |
Teaching Hours:6 |
Empathy, Resilience and Stress Management
|
|
- Understanding the needs and perspectives of users, colleagues, and clients | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern
| |
BTGE634 - GERMAN LANGUAGE (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
Course Description This beginner German course introduces pronunciation, grammar basics, and present tense sentence formation. Students build vocabulary for daily interactions and explore German culture and other German-speaking countries. Course Objectives: 1.To make the students to learn the basics of German Language 2.Enable them with basic reading and writing skills. 3. To make simple conversations in German Language |
|
Learning Outcome |
|
CO1: To make the students to learn the basics of German Language CO2: Enable them with basic reading and writing skills CO3: To make simple conversations in German Language |
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-1 |
Teaching Hours:6 |
|
Alphabets
|
||
Alphabets and Phonetics,Numbers,Making Present tense sentences | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-2 |
Teaching Hours:6 |
|
Making W questions and yes or no questions
|
||
Making W questions and yes or no questions | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-3 |
Teaching Hours:6 |
|
Vocabulary
|
||
Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar | ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-4 |
Teaching Hours:6 |
|
Prepositions,Making simple conversations
|
||
| ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Unit-5 |
Teaching Hours:6 |
|
Writing a small paragraph
|
||
Writing a small paragraph
Learning how to tell time | ||
Text Books And Reference Books: Netzwerk A1 Kursbuch | ||
Essential Reading / Recommended Reading Netzwerk A1 Arbeitsbuch | ||
Evaluation Pattern CIA-2 (out of 25) CIA-3 (out of 10) Attendance 5 Marks ESE (out of 50) | ||
BTGE635 - INTELLECTUAL PROPERTY RIGHTS (2022 Batch) | ||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|
Max Marks:100 |
Credits:2 |
|
Course Objectives/Course Description |
||
Innovation is crucial to us and plays significant role in the growth of economy. Government policies and legal framework offer protection to new inventions and creative works. This course intends to equip students to understand the policies and procedures they may have to rely on for the purposed of protecting their inventions or creative works during the course of their study or employment. The course consists of five units. Theories behind the protection of intellectual property and its role in promoting innovations for the progress of the society are the focus of first unit. Second unit deals with protection of inventions through patent regime in India touching upon the process of obtaining international patents. The central feature of getting patent is to establish new invention through evidence. This is done through maintaining experimental/lab records and other necessary documents. The process of creating and maintain documentary evidence is dealt in Unit 3. Computers have become an integral part of human life. Till 1980, computer related inventions were not given much importance and lying low but today they have assumed huge significance in our economy. Computer related inventions and their protection which requires special treatment under legal regimes are discussed in Unit 4. The last module deals with innovations in e- commerce environment.
|
||
Learning Outcome |
||
CO1: Understand the meaning and importance of intellectual property rights as well as different categories of intellectual property. CO2: Understand the meaning of patentable invention, the procedure for filing patent applications, rights of the patentee and the different rights of patentee. CO3: Maintain research records in the patent process, the process of patent document searching and how to interact with patent agent or attorney. CO4: Understand the issues related to patenting of software, digital rights management and database management system. CO5: Understand the intellectual property issues in e- commerce, evidentiary value of electronic signature certificates, protection of websites and the protection of semiconductor integrated circuits. |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists. | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-2 |
Teaching Hours:6 |
Patenting Inventions
|
|
Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-3 |
Teaching Hours:6 |
Inventive Activities
|
|
Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies. | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-4 |
Teaching Hours:6 |
Computer Implemented Inventions
|
|
Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Unit-5 |
Teaching Hours:6 |
Innovations in E-Commerce
|
|
IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of Semiconductor ICs | |
Text Books And Reference Books: 1. V.J. Taraporevala’s, Law of Intellectual Property, Third Edition, 2019 2. Elizabeth Verkey, Intellectual Property, Eastern Book Company, 2015 | |
Essential Reading / Recommended Reading 1. Martin Adelman, Cases and Materials on Patent Law, 2015 2. Avery N. Goldstein, Patent Law for Scientists and Engineers, Taylor & Francis (2005) | |
Evaluation Pattern CIA 1 Assignment description: Class test to identify the different aspects of IP.
Assignment details: MCQs
CIA II (MSE) Assessment Description: Closed book exam Assignment Details: Mid semester examination five questions need to be answered.
CIA III Assessment Description: Students would be assessed on the understanding of the different forms of IP, relevant theoretical justifications of intellectual property protection and the relevant IP statute from practitioner’s approach taught in the class and their ability to apply it correctly to the given problem and proposing solutions.
Assignment details: Students will be given a hypothetical legal problem in IP and will be required to write short essay, containing maximum 500 words. In the short essay, they have to answer the following questions 1. Identify the appropriate form of intellectual property. 2. Describe whether a pertinent theoretical justification meets or does not meet the respective form of IP. 3. Apply the correct principle of IP protection to the given case. 4. Evaluate the lacunae in the existing IP mechanism in comparison to international framework. 5. Devise a correct way of handling the lacunas. ESE DETAILS - Assessment Description : Closed book exam Assignment Details: Five problem based questions need to be answered out of seven questions. | |
BTGE637 - PROFESSIONAL PSYCHOLOGY (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
This course will enable the students to understand various developmental changes that takes place in human life and how people's thoughts, feelings, and behaviors are influenced by the social context consisting of the actual, imagined, or implied presence of others. The course introduces students to the existing theory and research in the past and contemporary social settings comprising viz, the intra-individual, inter-individual, and social factors that influence individual and group behavior. Course Objectives:
|
|
Learning Outcome |
|
CO1: Understand the frameworks for the psychology of human development. CO2: Show greater awareness of their thinking styles, relational styles, and behavioural styles of functioning. CO3: Develop interpersonal awareness and skills, especially in the context of diversity and difference. CO4: Develop preparatory skills toward effective work-life balance. CO5: Develop an overall understanding of the psychosocial skills required in the professional world. |
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-1 |
Teaching Hours:6 |
||||||||||||
Introduction to Psychological Theories
|
|||||||||||||
Psychosocial development (Erickson)- Development of Cognition (Piaget) - Moral Development (Kohlberg)- Faith Development (Fowler) | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||
Self-Awareness and Analysis
|
|||||||||||||
Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-3 |
Teaching Hours:5 |
||||||||||||
Social Influences
|
|||||||||||||
Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||
Approaches to work motivation and job design
|
|||||||||||||
Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||
Professional development and Diversity
|
|||||||||||||
Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework, Self Determination Theory (Ryan and Deci), Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness. | |||||||||||||
Text Books And Reference Books: Essential Readings: Baron, R. A., & Branscombe, N. R. (2006). Social psychology. Pearson Education India. Nelson Goud and Abe Arkoff. (2005), Psychology and Personal Growth, Edition, Allyn and Bacon Nelson Jones. (2006), Human Relationship Skills: Coaching and self-coaching, 4th edition, Routledge,
| |||||||||||||
Essential Reading / Recommended Reading Recommended Reading: Baron, R. A., (2012), Psychology, 5th edition. Pearson Education India. | |||||||||||||
Evaluation Pattern
CIA 1: Individual Assignment CIA 2: Mid-Semester Examinations (Written Examination) Pattern: Section A 5x02=10 marks Section B 4x05 = 20 marks Section C 2x10 =20 marks CIA 3: Group Assignment End Semester Examination (Written Examination) Pattern: Section A 5x02 =10 marks Section B 4x05 = 20 marks Section C 2x10 =20 marks | |||||||||||||
BTGE651 - DATA ANALYTICS THROUGH SPSS (2022 Batch) | |||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||
Max Marks:100 |
Credits:2 |
||||||||||||
Course Objectives/Course Description |
|||||||||||||
Course Description Course objectives After the completion of the course, you should be able to:
|
|||||||||||||
Learning Outcome |
|||||||||||||
CO1: Students will understand the concepts involved for analyzing Business data CO2: Students will be able to understand how to use software like SPSS to analyse data CO3: Students will be able to appreciate the use of Data Analytics for business decision making |
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-1 |
Teaching Hours:2 |
||||||
Introduction to data Analysis
|
|||||||
Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data. | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-2 |
Teaching Hours:2 |
||||||
Data Visualization
|
|||||||
Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-3 |
Teaching Hours:4 |
||||||
Descriptive Statistics and Hypothesis testing
|
|||||||
Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc. | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-4 |
Teaching Hours:4 |
||||||
Logistic Regression
|
|||||||
Application of logistic regression in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-5 |
Teaching Hours:4 |
||||||
Factor analysis
|
|||||||
Application of factor analysis in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Unit-6 |
Teaching Hours:14 |
||||||
Cluster Analysis and Discriminant analysis
|
|||||||
Application of Cluster analysis and Discriminant in SPSS using case study | |||||||
Text Books And Reference Books:
1. Andy field, “Discovering Statistics Using SPSS”, SAGE Publications, Second Edition, 2006.
| |||||||
Essential Reading / Recommended Reading
1. Darren George|Paul Mallery, “SPSS for Windows Step by Step”, Pearson, Tenth Edition, 2012.
| |||||||
Evaluation Pattern
| |||||||
BTGE652 - DIGITAL MARKETING (2022 Batch) | |||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||
Max Marks:100 |
Credits:2 |
||||||
Course Objectives/Course Description |
|||||||
Course Description:
Developing a successful digital marketing strategy and implementation is both an art and science. It involves in-depth knowledge of dynamics of new media (Social Media, Mobile) and utilizing the right resources and marketing skills to design and launch successful customer engagement campaigns. Digital Marketing course has been designed to help students to understand both functional and management roles required to plan and execute effective Digital Marketing campaigns. The course also helps students gain an insight how to plan and implement Digital Marketing initiatives
Course Objectives:
· To apply the basics of digital marketing in the contemporary business scenario
· To utilize google ads for promotional activities
· To contrast various social media marketing platforms and activities
· To analyse the search engine optimization and search engine marketing strategies To explain analytics pertaining to digital marketing initiatives
|
|||||||
Learning Outcome |
|||||||
CO1: Plan a digital marketing campaign as per client requirements CO2: Apply google ads in digital campaigns CO3: Analyse the appropriateness of social media marketing strategies with respect to campaign objectives CO4: Examine the search engine optimization efforts CO5: Appraise the digital marketing analytics related to the project |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-1 |
Teaching Hours:5 |
Introduction to Digital Marketing
|
|
Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan. Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-2 |
Teaching Hours:6 |
Search Engine Marketing
|
|
Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense. Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health. | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-3 |
Teaching Hours:9 |
Social Media Marketing
|
|
How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights
Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign
Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-4 |
Teaching Hours:6 |
e-mail Marketing and Search Engine Optimisation
|
|
e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics. Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Unit-5 |
Teaching Hours:4 |
Mobile Marketing and Web Analytics
|
|
Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes | |
Text Books And Reference Books: 1. Seema Gupta. (2020). Digital Marketing (2nd Ed). Tata Mc Graw Hill | |
Essential Reading / Recommended Reading
1. Kerpen, D., Berk, R., Greenbaum, M. (2019). Likeable social media, Third Edition: How To Delight Your Customers, Create an Irresistible Brand, & Be Generally Amazing On All Social Networks That Matter. United Kingdom: McGraw-Hill Education.
4. Marshall, P., Rhodes, M., Todd, B. (2020). Ultimate Guide to Google Ads. United States: Entrepreneur Press.
| |
Evaluation Pattern
CIA 1 – Digital Marketing Plan – 20 Marks
CIA 2 – Google Ads – 10 Marks
CIA 3 – Social Media Marketing – 25 Marks
CIA 4 – Web Analysis (SEO) – 20 Marks
CIA 5 – Analytics – 20 Marks
Attendance – 5 Marks
CIA – Total Marks – 100 Converted to 50
ETE
Viva Voce – 50 Marks
Report – 50 Marks
ETE – 100 Marks – Converted to 50 Overall Marks – CIA + ESE = 100
| |
BTGE653 - DIGITAL WRITING (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The course will develop the knowledge and skills required to write content for digital media. Students will learn how to craft writing for different areas of the media by focusing on genres such as profiles, informative pieces, articles and content pieces. Students will work on pitching and marketing ideas, discuss topics such as timelines, word counts and deadlines. The course will also examine the principles of reporting and the legal and ethical issues associated with content writing
The course intends to provide students with an in-depth understanding of the nature of digital content. The course will acquaint students with the techniques of writing simple but polished digital content. The subject will develop creativity in writing and imaginative approaches to digital content writing. The paper will help students understand the mechanics of content writing |
|
Learning Outcome |
|
CO1: Students will learn how to write digital content for websites, blogs, and general social networking sites CO2: Students will learn the importance of using hyperlinks to information sources when writing an article CO3: Students will be able to differentiate between original and plagiarized content and develop mechanisms to avoid plagiarism |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-1 |
Teaching Hours:6 |
Introduction to Digital Writing
|
|
What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-2 |
Teaching Hours:6 |
Writing Techniques
|
|
Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-3 |
Teaching Hours:6 |
Writing for Newspapers
|
|
Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-4 |
Teaching Hours:6 |
Writing a Book Proposal
|
|
Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal. | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Unit-5 |
Teaching Hours:6 |
Writing Resume and Cover
|
|
Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern Introduction - 10 Content - 10 Structure - 10 Clarity- 10 Conclusion -10 | |
BTGE654 - PHOTOGRAPHY (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
1. To provide proficiency in handling tools related to the photographic Images 2. To explore the role of the photographer in the architectural community. 3. To provide skills and knowledge in the application of various types of lights on the photography.
4. To develop solutions for visual art related problems and to understand the concept of visual-based communication. |
|
Learning Outcome |
|
CO1: Ability to develop photography skill to express the art of communication CO2: Improvising professional skills in the realm of documentation and photography art direction |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-1 |
Teaching Hours:10 |
Introduction of Photography
|
|
Exposure to a variety of Analog and digital photographic techniques. Basics of shots, sizes, and angles. Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.
Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-2 |
Teaching Hours:8 |
Photographic Design
|
|
Introduction to contemporary and historic photographers and their works.
Understanding and applying visual design elements and principles in photography. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-3 |
Teaching Hours:8 |
Appreciation of photography
|
|
Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography. Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.
Edward Weston and Ansel Adams in the 1930’s. | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Unit-4 |
Teaching Hours:4 |
Print media and Portfolio
|
|
Introduction to Print medium.
Portfolios (Digital Format) | |
Text Books And Reference Books: 1. Schaeffer J. P. (1998) The Ansel Adams guide: Basic techniques of photography, Boston: Little Brown and Company. 2. Horenstein, H. (1977) Beyond Basic Photography: A Technical Manual, Boston: Little Brown and Company.
3. Craven, G. M.(1990) Object and Image: An Introduction to Photography, New Jersey: Prentice-Hall, Englewood Cliffs. | |
Essential Reading / Recommended Reading 1. Peterson, B. (2016) Understanding Exposure, Fourth Edition, Random House USA Inc. 2. DK (2015) Digital Photography Complete Course, DK; Reissue edition. 3. Northrup T. & Northrup C. (2012) Tony Northrup's DSLR Book: How to Create Stunning Digital Photography, (2nd edition) Mason Press. 4. Hunter, F., Biver S. & Fuqua P. (2015) Light Science & Magic: An Introduction to Photographic Lighting, Routledge, ISBN-10: 0415719402. Peterson B. (2017) Understanding Colour in Photography: Using Colour, Composition, and Exposure to Create Vivid Photos, Random House US, ISBN-10 : 9780770433116 | |
Evaluation Pattern The assessment pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). The weightage of marks for subjects having both CIA marks, as well as ESE marks, have a ratio of 50:50. CONTINUOUS INTERNAL ASSESSMENT (CIA): 50% Continuous Internal Assessment for this course shall be conducted by the respective faculty in the form of different types of assignments. Students need to complete the assignments within the stipulated time for the award of marks. END SEMESTER EXAMINATION (ESE): 50% Eligibility to appear for ESE is a score of a minimum of 50% in the CIA. PASS CRITERIA A student shall pass the course only on a minimum aggregate score (CIA+ESE) of 45% and a minimum CIA Score of 50% and an ESE score of 40% | |
BTGE655 - ACTING COURSE (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
In this course the students are introduced different aspects of acting such as creating a character, analyzing a script, working on voice and developing body language. At the end of the course the learners will perform a monologue. The course aims at the study and practice of Classical Acting. The development of individual imagination, insight, skills and disciplines in the presentation of drama to audience. |
|
Learning Outcome |
|
CO1: To understand different aspects of acting and to perform a monologue |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-1 |
Teaching Hours:10 |
Unit 1
|
|
Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-2 |
Teaching Hours:10 |
Unit 2
|
|
Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice,
| |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Unit-3 |
Teaching Hours:10 |
Unit 3
|
|
Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, | |
Text Books And Reference Books: Stanislavsky, Constantine. “An Actor prepares.” | |
Essential Reading / Recommended Reading Stanislavsky, Constantine. “An Actor prepares.” | |
Evaluation Pattern The assessment of the students is happening throughout the course and will be completed with the final monologue performance.
The assignments need to be submitted via Google Classroom by the given deadlines. Actor’s notebooks need to follow the given requirements. Monologues will be performed live.
Completing all the given assignments throughout the course –20 marks Submission of actor’s notebook – 20 marks Final monologue performance – 60 marks | |
BTGE656 - CREATIVITY AND INNOVATION (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
To equip students with skill and aptitude for creativity and innovation through
To stimulate curiosity in students to identify the areas of gaps and opportunities and solutions that can be provided
To stimulate creativity in students to come up with ideas for the areas of gaps and opportunities
|
|
Learning Outcome |
|
CO-1: Develop an aptitude for creative thinking and problem solving in the areas that drive their interest. CO-2: Understand the benefits of team work and collaborative thinking CO-3: Understand the three keys aspects of the creative process viz. ACES CO-4: Develop projects to understand the various principles and elements of creativity and innovation CO-5: Apply the concepts of IPR to verify the projects which may be patentable, design and copyright protected |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-2 |
Teaching Hours:6 |
The Creative Process Part I (Analyzing Problems)
|
|
Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-3 |
Teaching Hours:6 |
The Creative Process Part II (Creating Ideas)
|
|
Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking),
Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-4 |
Teaching Hours:6 |
The Creative Process Part III (Engineering Solutions)
|
|
Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Unit-5 |
Teaching Hours:6 |
Innovation and IPR
|
|
Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret | |
Text Books And Reference Books: Activity Based Teaching. No text books and reference books | |
Essential Reading / Recommended Reading Activity Based Teaching. No text books and reference books | |
Evaluation Pattern This course consists of Overall Cia for 100 marks. No End Semester Examination for this course. | |
BTGE657 - PAINTING AND SKETCHING (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
The course will develop the skills required to represent elements of nature and surrounding objects. Students will learn how to use the appropriate medium for representing their thought process. The course will examine the representation skills through exercises on sketching and rendering. |
|
Learning Outcome |
|
CO3: Students will learn how to represent their ideas and thought processes diagrammatically through sketching and rendering. |
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-1 |
Teaching Hours:10 |
|
Representation through Sketching
|
||
This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing . | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-2 |
Teaching Hours:10 |
|
Introduction to Watercolour Painting Techniques
|
||
Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Unit-3 |
Teaching Hours:10 |
|
Introduction to Soft Pastel Techniques
|
||
To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc. | ||
Text Books And Reference Books: Drawing : (Ching, Francis D K)
| ||
Essential Reading / Recommended Reading milind mulick watercolor sketchbook by milind mulick
| ||
Evaluation Pattern The following courses do not | ||
BTGE658 - DESIGN THINKING (2022 Batch) | ||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|
Max Marks:100 |
Credits:2 |
|
Course Objectives/Course Description |
||
Course Description: Throughout the course students will work on three different challenges; one focused on product design, one focused on service design and one focused on systems or business design. By starting with a very tangible challenge around product design, students will be able to hone their skills in the process before moving into more complex challenges around business and systems level design.
The course will be teamwork-oriented, but students will also complete readings and independent activities that support the group work and ensure individual depth of knowledge.
Course objectives: l Expose students to the design process as a tool for innovation. l Develop students’ professional skills in client management and communication. l Demonstrate the value of developing a local network and assist students in making lasting connections with the business community. l Students develop a portfolio of work to set them apart in the job market. l Provide an authentic opportunity for students to develop teamwork and leadership skills. |
||
Learning Outcome |
||
CO1: Design Process 1. Students develop a strong understanding of the Design Process and how it can be applied in a variety of business settings 2. Students learn to research and understand the unique needs of a company around specific challenges 3. Students learn to build empathy for target audiences from different cultures 4. Students learn to develop and test innovative ideas through a rapid iteration cycle 5. Students learn how to create physical prototypes / a visual representation of an idea 6. Students develop the willingness to take a risk and the ability to deal with failure CO2: Professionalism 1. Students develop professional interpersonal and presentation skills 2. Students develop professional communication skills such as interviewing and crafting professional emails 3. Students learn to take ownership of the quality of their work and final products 4. Students understand their duty to maintain ethical standards in product and strategy design 5. Students understand the value of and have tools to develop a strong network CO3: Leadership and teamwork 1. Students develop self awareness of personal leadership style and how to effectively work as a member of a team 2. Students collaborate on a variety of projects 3. Students develop communication skills necessary to facilitate high performance team formation and maintenance (e.g., leveraging the skills and abilities of all team members, valuing cross-disciplinary/cultural contributions, engaging in difficult conversations and resolving conflict) |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-1 |
Teaching Hours:10 |
Module 1: Intro to Design Thinking and Product Design
|
|
Introduction to Design Thinking Introduction to Design Research Strategies Introduction to Synthesis Introduction to Ideation and Prototyping Strategies | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-2 |
Teaching Hours:10 |
Module 2: Team Work and Service Design
|
|
Team work discussion + Launch of Service challenge Design Research - tools for observation + immersion Journey mapping and ideation Develop Final Presentations Final Presentations and Leadership Styles discussion | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Unit-3 |
Teaching Hours:10 |
Module 3: Business or Systems Design
|
|
Launch final challenge – system or student challenge Business Model Canvas and Design Research Visualizing ideas Communicating ideas and effective storytelling Final Presentations and class celebration | |
Text Books And Reference Books: Essential References: 1. Design Your Thinking: The Mindsets, Toolsets and Skill Sets for Creative Problem-solving Hardcover – 23 December 2020, by Pavan Soni. 2. The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods, by Michael Lewrick, Patrick Link, Larry Leifer. 3. Design Thinking: Understanding How Designers Think and Work, by Nigel Cross, BERG, Oxford, Newyork. | |
Essential Reading / Recommended Reading Recommended References: 1. HBR's 10 Must Reads on Design Thinking (with featured article "Design Thinking" By Tim Brown) Paperback – 10 August 2020, by Publisher : Harvard Business Review Press (10 August 2020); Penguin Random House. 2. Change by Design, Revised and Updated: How Design Thinking Transforms Organizations and Inspires Innovation, by Tim Brown. Publisher HarperCollins, 2019; ISBN 0062856715, 9780062856715. 3. This is Service Design Thinking: Basics, Tools, Cases, by Marc Stickdorn, Jakob Schneider, Publisher BIS Publ., 2012; ISBN 906369279X, 9789063692797 | |
Evaluation Pattern Evaluation Pattern: This courses do not have CIA-1-2-3 and ESE. It has only Overall CIA (out of 100). This will be treated as the final ESE.
The following case studies will be given for the evaluation of overall CIA.
1. Case Studies focused on product design. 2. Case Studies focused on service design. 3. Case Studies focused on systems or business design. | |
BTGE659 - FOUNDATIONS OF AVIATION (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
A student successfully completing this course will be able to: Explain basic terms and concepts in air transportation, including commercial, military, and general aviation; air traffic control. Identify on the parts of an aircraft, classify the aircraft types and Construct models of an Aircraft. Understand the types of Aero engines and analyse the impact of meteorology in Aviation. |
|
Learning Outcome |
|
CO1: Interpret the fundamental principles of flight based on theorems and parts of the Aircraft CO2: Summarize the types of aircrafts and illustrate modelling of an Aircraft CO3: Identify the types of Aero engines and Make use of Meteorology |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-1 |
Teaching Hours:10 |
Introduction to Principles of Flight
|
|
Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-2 |
Teaching Hours:10 |
Aircrafts and Aeromodelling
|
|
Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear. Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Unit-3 |
Teaching Hours:10 |
Aero Engines and Meteorology
|
|
Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation | |
Text Books And Reference Books: Text Books: • Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016. • Introduction to Aerospace Engineering: Basic Principles of Flight, Ethirajan Rathakrishnan, Wiley Press, 2021.
| |
Essential Reading / Recommended Reading . | |
Evaluation Pattern This Course do not have CIA 1/2/3. It has Overall CIA(out of 100 and will be Converted to 50) and ESE ( out of 100 and will be converted to 50). Total Marks=100. | |
MAHO631DMP - INTERNET OF THINGS FOR INDUSTRY AUTOMATION (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
This course focuses on the latest microcontrollers with application development, product design and prototyping. Ideally suited for engineering students and graduates with a basic understanding of electronics and microprocessors. The Internet of Things (IOT) is the next wave, world is going to witness. Today we live in an era of connected devices (mobile phones, computers etc.), the future is of connected things (Eg: home appliances, vehicles, lamp-posts, personal accessories, your pets, industrial equipments and everything which you use in day-to-day life). Internet of Things is a term given to the attempt of connecting objects to the internet and also to each other - allowing people and objects themselves to analyze data from various sources in real-time and take necessary actions in an intelligent fashion |
|
Learning Outcome |
|
CO-1: Will be able to explain the definition and significance of the Internet of Things. (PO1, PO2, L1 & L2) CO-2: Differentiate between the levels of the IoT stack and be familiar with the key technologies and protocols employed at each layer of the stack (PO1, PO2, PO3, L2, L3 ) CO-3: apply the knowledge and skills acquired during the course to build and test a complete, working IoT system involving prototyping, programming and data analysis (PO1, PO2, PO3, L2, L3 ) CO-4: appreciate the role of big data, cloud computing and data analytics in a typical IoT system (PO1, PO2, PO3, L2, L3 ) CO-5: Identify how IoT differs from traditional data collection systems (PO1, PO2, PO3, L2, L3 ) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Introduction to IoT
|
||||||||||||||||||||||||||||||||||||
Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Introduction to IoT
|
||||||||||||||||||||||||||||||||||||
Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Introduction to IoT
|
||||||||||||||||||||||||||||||||||||
Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
IoT & M2M
|
||||||||||||||||||||||||||||||||||||
Machine to Machine, Difference between IoT and M2M, Softwaredefine Network. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
IoT & M2M
|
||||||||||||||||||||||||||||||||||||
Machine to Machine, Difference between IoT and M2M, Softwaredefine Network. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
IoT & M2M
|
||||||||||||||||||||||||||||||||||||
Machine to Machine, Difference between IoT and M2M, Softwaredefine Network. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Network & Communication aspects :
|
||||||||||||||||||||||||||||||||||||
Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Network & Communication aspects :
|
||||||||||||||||||||||||||||||||||||
Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Network & Communication aspects :
|
||||||||||||||||||||||||||||||||||||
Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Challenges in IoT
|
||||||||||||||||||||||||||||||||||||
Design challenges, Development challenges, Security challenges,Other challenges. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Challenges in IoT
|
||||||||||||||||||||||||||||||||||||
Design challenges, Development challenges, Security challenges,Other challenges. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Challenges in IoT
|
||||||||||||||||||||||||||||||||||||
Design challenges, Development challenges, Security challenges,Other challenges. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Domain specific applications of IoT
|
||||||||||||||||||||||||||||||||||||
Home automation, Industry applications, Surveillance applications,Other IoT applications | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Domain specific applications of IoT
|
||||||||||||||||||||||||||||||||||||
Home automation, Industry applications, Surveillance applications,Other IoT applications | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Domain specific applications of IoT
|
||||||||||||||||||||||||||||||||||||
Home automation, Industry applications, Surveillance applications,Other IoT applications | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Vijay Madisetti, Arshdeep Bahga, “Internet of Things: A Hands-On Approach”VPT; 1 edition (August 9, 2014).
T2. Waltenegus Dargie,Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" Wiley (2010). | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. David Etter ,“IOT (Internet of Things) Programming: A Simple and Fast Way of Learning IOT”, Orient Blackswan Private Limited - New Delhi; First edition (2015) R2. RMD Sundaram Shriram K Vasudevan, Abhishek S Nagarajan,”Internet of Things”, Wiley (2019). | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
MICSAI634 - INTRODUCTION TO MACHINE LEARNING (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:5 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
Course Description: This course is designed to provide a comprehensive understanding of machine learning concepts, algorithms, and applications. The course emphasizes hands-on experience through practical implementation using python. Course objectives: 1. To identify the scope and necessity of Data Mining & Warehousing for the society. 2. To understand students to the basic concepts and techniques of Machine Learning. 3. To learn and understand the concept of neural networks. 4. To understand classification and clustering techniques. 5. To understand evolutionary models. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
1: Understand Data Mining & Warehousing concepts 2: Understand and Distinguish between types of learning 3: Build neural networks using algorithms 4: Make use of applications with clustering and classification techniques 5: Understand evolutionary models |
Unit-1 |
Teaching Hours:12 |
DATA MINING AND DATA WAREHOUSING
|
|
Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.
Experiment 1: Implementation of Arrays using Numpy. Experiment 2: Data Pre-processing like missing values, scaling etc. | |
Unit-1 |
Teaching Hours:12 |
DATA MINING AND DATA WAREHOUSING
|
|
Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.
Experiment 1: Implementation of Arrays using Numpy. Experiment 2: Data Pre-processing like missing values, scaling etc. | |
Unit-1 |
Teaching Hours:12 |
DATA MINING AND DATA WAREHOUSING
|
|
Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.
Experiment 1: Implementation of Arrays using Numpy. Experiment 2: Data Pre-processing like missing values, scaling etc. | |
Unit-1 |
Teaching Hours:12 |
DATA MINING AND DATA WAREHOUSING
|
|
Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.
Experiment 1: Implementation of Arrays using Numpy. Experiment 2: Data Pre-processing like missing values, scaling etc. | |
Unit-1 |
Teaching Hours:12 |
DATA MINING AND DATA WAREHOUSING
|
|
Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.
Experiment 1: Implementation of Arrays using Numpy. Experiment 2: Data Pre-processing like missing values, scaling etc. | |
Unit-2 |
Teaching Hours:12 |
INTRODUCTION TO MACHINE LEARNING
|
|
Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression. Experiment 3: Implementation of Data visualization using Matplotlib Experiment 4: Implementation of Data visualization using SKlearn | |
Unit-2 |
Teaching Hours:12 |
INTRODUCTION TO MACHINE LEARNING
|
|
Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression. Experiment 3: Implementation of Data visualization using Matplotlib Experiment 4: Implementation of Data visualization using SKlearn | |
Unit-2 |
Teaching Hours:12 |
INTRODUCTION TO MACHINE LEARNING
|
|
Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression. Experiment 3: Implementation of Data visualization using Matplotlib Experiment 4: Implementation of Data visualization using SKlearn | |
Unit-2 |
Teaching Hours:12 |
INTRODUCTION TO MACHINE LEARNING
|
|
Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression. Experiment 3: Implementation of Data visualization using Matplotlib Experiment 4: Implementation of Data visualization using SKlearn | |
Unit-2 |
Teaching Hours:12 |
INTRODUCTION TO MACHINE LEARNING
|
|
Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression. Experiment 3: Implementation of Data visualization using Matplotlib Experiment 4: Implementation of Data visualization using SKlearn | |
Unit-3 |
Teaching Hours:12 |
Neural Networks
|
|
Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.
Experiment 5: Implementation of Data Analysis using Python Experiment 6: Implementation of Arrays using Pandas | |
Unit-3 |
Teaching Hours:12 |
Neural Networks
|
|
Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.
Experiment 5: Implementation of Data Analysis using Python Experiment 6: Implementation of Arrays using Pandas | |
Unit-3 |
Teaching Hours:12 |
Neural Networks
|
|
Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.
Experiment 5: Implementation of Data Analysis using Python Experiment 6: Implementation of Arrays using Pandas | |
Unit-3 |
Teaching Hours:12 |
Neural Networks
|
|
Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.
Experiment 5: Implementation of Data Analysis using Python Experiment 6: Implementation of Arrays using Pandas | |
Unit-3 |
Teaching Hours:12 |
Neural Networks
|
|
Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.
Experiment 5: Implementation of Data Analysis using Python Experiment 6: Implementation of Arrays using Pandas | |
Unit-4 |
Teaching Hours:12 |
Classification and Clustering Techniques
|
|
Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.
Experiment 7: Implementation of K-Means Algorithm. Experiment 8: Implementation of Naïve Bayes Algorithm. | |
Unit-4 |
Teaching Hours:12 |
Classification and Clustering Techniques
|
|
Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.
Experiment 7: Implementation of K-Means Algorithm. Experiment 8: Implementation of Naïve Bayes Algorithm. | |
Unit-4 |
Teaching Hours:12 |
Classification and Clustering Techniques
|
|
Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.
Experiment 7: Implementation of K-Means Algorithm. Experiment 8: Implementation of Naïve Bayes Algorithm. | |
Unit-4 |
Teaching Hours:12 |
Classification and Clustering Techniques
|
|
Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.
Experiment 7: Implementation of K-Means Algorithm. Experiment 8: Implementation of Naïve Bayes Algorithm. | |
Unit-4 |
Teaching Hours:12 |
Classification and Clustering Techniques
|
|
Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.
Experiment 7: Implementation of K-Means Algorithm. Experiment 8: Implementation of Naïve Bayes Algorithm. | |
Unit-5 |
Teaching Hours:12 |
Evolutionary Models
|
|
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process
Experiment 9: Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm | |
Unit-5 |
Teaching Hours:12 |
Evolutionary Models
|
|
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process
Experiment 9: Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm | |
Unit-5 |
Teaching Hours:12 |
Evolutionary Models
|
|
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process
Experiment 9: Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm | |
Unit-5 |
Teaching Hours:12 |
Evolutionary Models
|
|
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process
Experiment 9: Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm | |
Unit-5 |
Teaching Hours:12 |
Evolutionary Models
|
|
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process
Experiment 9: Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm | |
Text Books And Reference Books: R1: Ethem Alpaydin, “Introduction to Machine Learning”, MIT Press, 3rd Edition, 2014. R2: Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, “Learning from Data”, AML Book Publishers, 2012. R3: Andreas, C. Muller & Sarah Guido, “Introduction to Machine Learning with Python A guide for data scientists”. R4: Peter Flach, “Machine Learning: The Art and Science of Algorithms that Make Sense of Data‖”, 1st Edition, Cambridge University Press, 2012. R5: Tom M Mitchell, “Machine Learning”, 1st Edition, McGraw Hill Education, 2013. | |
Essential Reading / Recommended Reading W1: Machine Learning with Python: https://www.coursera.org/learn/machine-learning-with- python W2: Name of the Course: Machine Learning A-Z: AI, Python & R + ChatGPT Prize [2024] https://www.udemy.com/share/101Wci/ W3: Udemy Course Python Programming: A Practical Approach by Dr. Xavier Chelladurai.: https://www.udemy.com/course/python-programming-2021-full-coverage-a-practical- approach/?couponCode=1BF4620C490F86413A5E W4: Name of the Course: Python Programming Full Coverage: A Practical Approach Python Programming: A Practical Approach | Udemy | |
Evaluation Pattern CIA 1- 20 Maks CIA-2 - 50 Marks CIA-3 - 20 Marks End Sem Exam: 100 Marks Scaled: CIA-70 Marks+ ESE 30 Marks
| |
RM631P - DIGITAL MANUFACTURING (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
The objective is to transform product ideas into viable products: hand sketching; fundamental engineering design principles and procedures; design, analysis and optimization of parts using CAD, CAM, CAE technologies; implementation of additive manufacturing; and reverse engineering complete processes. |
|
Learning Outcome |
|
CO1: Identify different axes, machine zero, home position, systems and controls CNC machines. {L1} CO2: Apply ideas of product design using 2D sketches, 3D modelling, parametric design and assembly modelling. {L2} CO3: Understand general stages of the process, solid and FEA models, materials definition, loading, post-processing, results and verifications. {L2} CO4: Interface software application for auto part programming. {L2} CO5: Understand digitizing methods and main technologies: applications and selection of reverse engineering systems. {L2} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fundamentals of process planning and CNC systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Computer Numerical Control: CNC Systems – An Overview of Fundamental aspects of machine control, Different types of CNC machines – Advantages and disadvantages of CNC machines. Process planning, Structure of process plan, factors influencing process plan, Sequence of operation of process, CAM, NC, CNC and DNC, selection criteria for CNC machines, adaptive control | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additive Manufacturing processes ? Advanced materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronic Materials, Bioprinting, Food Printing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additive Manufacturing processes-Engineering polymers, metals, ceramics:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stereolithography, Selective Laser Sintering, Fused Deposition Modeling, Polyjet, LENS, Layered object manufacturing
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2D Cutting and Programmable Assembly
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2D Cutting: Laser Cutting, Plasma Cutting, Waterjet Programmable Assembly: Digital Assembly, Digital Bending
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Computer Aided Design (CAD)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3D modelling, Parametric design, Assembly modelling, Render the appearance of a product, CAD and additive manufacturing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Computer Aided Engineering (CAE)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Finite Element Analysis (FEA) to validate functional performance: general stages of the process, solid and FEA models, materials definition, loading (loads, displacements constraints…), post-processing, results and verifications. Topology optimization in additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reverse engineering General methodology
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Point clouds, meshes (.stl), NURBS surface models and parametric CAD models. Digitizing methods and main technologies: applications and selection of reverse engineering systems. Hardware and software involved. Reverse engineering and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. K. T. Ulrich and S. D. Eppinger, Product Design and Development, 6th Ed., McGraw-Hill Education, 2015. ISBN-13: 978-0-078-02906-6 T2. Parametric Technology Corporation (PTC), Simulation using Creo Parametric user guides. T3. Raja and K. J. Fernandes (eds.), Reverse Engineering. An Industrial Perspective, 1st Ed., Springer-Verlag London, 2008. ISBN-13: 978-1-849-96660-3 T4. N. Hopkinson, R. J. M. Hague and P. M. Dickens (eds.), Rapid Manufacturing: An Industrial Revolution for the Digital Age, 1st Ed., John Wiley & Sons, 2005. ISBN-13: 978-0-470-01613-8 T5. P.N.Rao, N.K.Tiwari, T. Kundra, Computer Aided Manufacturing, Tata McGraw Hill, New Delhi,2014. T6. O.P.Khanna, Industrial Engineering, Dhanpat rai, New Delhi, 2012. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson education, Fourth Edition, 2016. R2. S.K.Vajpayee, Principles of CIM, PHI, 1995. R3. Z. Zhou, S. Xie, and D. Chen, Fundamentals of Digital Manufacturing Science, 1st Ed., Springer-Verlag London, 2012. ISBN-13: 978-1-447-12714-7 R4. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer-Verlag Boston, 2010. ISBN-13: 978-1-441-91119-3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
● Minimum marks required to pass in practical component is 40%. ● Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course. ● A minimum of 40 % required to pass in ESE -Theory component of a course. ● Overall 40 % aggregate marks in Theory & practical component, is required to pass a course. ● There is no minimum pass marks for the Theory - CIA component. ● Less than 40% in practical component is refereed as FAIL. ● Less than 40% in Theory ESE is declared as fail in the theory component. ● Students who failed in theory ESE have to attend only theory ESE to pass in the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM632P - ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The course should enable the student 1. To understand the representation of AI techniques, agents and agent environments. 2. To study about applications of AI and ML techniques 3. To know the knowledge representation and learning 4. To enable the students to apply these techniques in application which involve perception, reasoning and learning 5. To apply the working of Neural Network techniques |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the fundamental knowledge of AI and Intelligent agents (L2) CO2: Describe the various learning models with real-time scenarios (L2) CO3: Construct various learning models using python (L3) CO4: Experiment with the working of several neural networks with case studies (L3 CO5: Examine the applications of AI in various sectors and its research aspects (L4) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO AI
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition of AI, Types of environment, Types of agents, Performance measure, Environment, Actuators, Sensors, AI and society – Applications and Limitations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO ML
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic definitions, types of learning, hypothesis space and inductive bias, evaluation, cross-validation, Case studies using ML in real world | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SUPERVISED AND UNSUPERVISED LEARNING
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Linear Regression – Logistic Regression, SVM Classifier, K-means clustering - KNN (k-nearest neighbors) – Performance Metrics and Errors | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO NEURAL NETWORKS
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Biological Neural Networks - Artificial Neural Networks – Introduction to Convolutional Neural Networks - Convolution operations – Pooling - Image classification - Modern CNN architectures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CASE STUDIES
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Case Study Discussions on Autonomous driving, Computer Vision in Industrial Automation - AI in Manufacturing – AI in Smart cities | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Martin C. Brown,”Python: The Complete Reference”, McGraw Hill Education; Forth edition (20 March 2018) T2. Wolfgang Ertel. “Introduction to Artificial Intelligence”, Springer; 2nd edition (2017) T3. Bharath Ramsundar, Reza Bosagh Zadeh. “TensorFlow for Deep Learning”, O'Reilly Media, Inc., March 2018. T4. EthemAlpaydin, ―Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Nils J. Nilsson, ―Artificial Intelligence: A new Synthesis‖, Harcourt Asia Pvt. Ltd., 2000. R2. Elaine Rich and Kevin Knight, ―Artificial Intelligence‖, 2nd Edition, Tata McGraw-Hill, 2003. R3. George F. Luger, ―Artificial Intelligence-Structures And Strategies For Complex Problem Solving‖, Pearson Education / PHI, 2002. R4. Janakiraman, K. Sarukesi, ̳Foundations of Artificial Intelligence and Expert Systems‘, Macmillan Series in Computer Science. R5. W. Patterson, ̳Introduction to Artificial Intelligence and Expert Systems‘, Prentice Hall of India, 2003 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RM633 - FIELD AND SERVICE ROBOTS (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
At the end of the course, the students would be able ● To study the various parts of robots and fields of robotics. ● To study about the localization, planning and navigation. ● To study the control of robots for some specific applications.
● To study about the humanoid robots. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the basic concepts of working of robot (L2) CO2: Analyze the function of sensors in the robot (L4) CO3: Apply of robot programming methods for robotic applications. (L3) CO4: Explain use of robots in different applications (L2) CO5: Describe about the humanoid robots. (L2) |
Unit-1 |
Teaching Hours:9 |
INTRODUCTION:
|
|
History of service robotics – Present status and future trends – Need for service robots – applications examples and Specifications of service and field Robots. Non-conventional Industrial robots. | |
Unit-2 |
Teaching Hours:9 |
LOCALIZATION:
|
|
LOCALIZATION: Challenges of Localization- Map Representation- Probabilistic Map based Localization-Monte carlo localization- Landmark based navigation-Globally unique localization- Positioning beacon systems- Route based localization.
PLANNING AND NAVIGATION-Path planning overview- Road map path planning- Cell decomposition path planning-Potential field path planning-Obstacle avoidance - Case studies: tiered robot architectures. | |
Unit-3 |
Teaching Hours:9 |
FIELD ROBOTS
|
|
Ariel robots- Collision avoidance-Robots for agriculture, mining, exploration, underwater, civilian and military applications, nuclear applications, Space applications. | |
Unit-4 |
Teaching Hours:10 |
HUMANOIDS
|
|
Wheeled and legged, Legged locomotion and balance, Arm movement, Gaze and auditory orientation control, Facial expression, Hands and manipulation, Sound and speech generation, Motion capture/Learning from demonstration, Human activity recognition using vision, touch, sound, Vision, Tactile Sensing, Models of emotion and motivation. Performance, Interaction, Safety and robustness, Applications, Case studies | |
Unit-5 |
Teaching Hours:8 |
Basic Introduction about Micro Robotics
|
|
Basic Introduction about Micro Robotics, Cognitive Robotics, Cloud Robotics, Medical Robotics, Swarm Robotics | |
Text Books And Reference Books: T1. Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, Introduction to Autonomous Mobile Robots”, Bradford Company Scituate, USA, 2004 T2. Riadh Siaer, „The future of Humanoid Robots- Research and applications‟, Intech Publications, 2012.
T3. Kelly, Alonzo; Iagnemma, Karl; Howard, Andrew, "Field and Service Robotics ", Springer, 2011 | |
Essential Reading / Recommended Reading R1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, Robotics Engineering – An Integrated Approach, Eastern Economy Edition, Prentice Hall of India P Ltd., 2006.
| |
Evaluation Pattern ASSESSMENT - ONLY FOR THEORY COURSE {without practical component} ● Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks} ● End Semester Examination{ESE} : 50% {50 marks out of 100 marks} Components of the CIA CIA I : Subject Assignments / Online Tests : 10 marks CIA II : Mid Semester Examination {Theory} : 25 marks CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications : 10 marks Attendance : 05 marks Total : 50 marks Mid Semester Examination {MSE} : Theory Papers: ● The MSE is conducted for 50 marks of 2 hours duration. ● Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks End Semester Examination {ESE}: The ESE is conducted for 100 marks of 3 hours duration. The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution. Question paper pattern is as follows. Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year. The criteria for drawing the questions from the Question Bank are as follows 50 % - Medium Level questions 25 % - Simple level questions
25 % - Complex level questions | |
RM637 - SERVICE LEARNING (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
1. To develop a habit of critical reflection for life-long learning in solving societal problems. 2. To work with a community and identify a specific need that can be addressed through Involvement and engineering practices. |
|
Learning Outcome |
|
CO1: Integrates the academic work with community service through student involvement. [L3] [PO1, PO2, PO3, PO4, PO12]. CO2: Develop and implement a project designed to respond to that identified community need. [L3] [PO1, PO2, PO3, PO4, PO12]. CO3: Create an awareness among the students as responsible citizen of the community/society. [L3] [PO1, PO2, PO3, PO4, PO12]. |
Unit-1 |
Teaching Hours:30 |
||||||
Service Learning
|
|||||||
| |||||||
Text Books And Reference Books: T1. S. P. Sukhatme, “Solar Energy, Principles of Thermal Collection and Storage,” 6th Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 1990 T2. George Techobanoglous, “Integrated Solid Waste Management” McGraw - Hill, 1993. T3. R.E.Landrefh and P.A.Rebers,” Municipal Solid Wastes-Problems & Solutions”, Lewis, 1997. T4. Michael Allaby, “Fog, Smog and poisoned rain”, Facts on File Incorporation, 2002. ISBN:0-8160-4789-8 T5. Arceivala S. J. and Asolekar S. R., Wastewater Treatment for Pollution Control and Reuse. 3rd Edition, Tata McGraw Hill, New Delhi, 2015. | |||||||
Essential Reading / Recommended Reading R1. George Techobanoglous and Thiesen Ellasen, “Solid Waste Engineering Principles and Management”, Tata-McGraw – Hill, 1997. R2. Blide A.D. and Sundaresan, B.B., “Solid Waste Management in Developing Countries”, INSDOC, 1993. R3. Arun Kumar Jain, Ashok Kumar Jain, B.C., Punmia, “Wastewater Engineering (Environmental Engineering-II), (Including Air Pollution)”, Laxmi Publications Pvt. Ltd., 2014, ISBN 10: 8131805964, ISBN 13: 9788131805961. | |||||||
Evaluation Pattern
| |||||||
RM644E3 - MOBILE APPLICATION DEVELOPMENT (2022 Batch) | |||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||
Max Marks:100 |
Credits:3 |
||||||
Course Objectives/Course Description |
|||||||
The course should enable the students to: ∙ Understand system requirements for mobile applications ∙ Generate suitable design using specific mobile development frameworks ∙ Generate mobile application design ∙ Implement the design using specific mobile development frameworks ∙ Deploy the mobile applications in marketplace for distribution |
|||||||
Learning Outcome |
|||||||
CO1: Explain the challenges in mobile application design and development{L1} CO2: Develop design for mobile applications for specific requirements {L2} CO3: Implement the design using Objective C and iOS {L3} CO4: Implement the design using Android SDK {L3} CO5: Deploy mobile applications in Android and iPhone marketplace for distribution{L2} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to mobile applications – Embedded systems - Market and business drivers for mobile applications – Publishing and delivery of mobile applications – Requirements gathering and validation for mobile applications | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Basic Design
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction – Basics of embedded systems design – Embedded OS - Design constraints for mobile applications, both hardware and software related – Architecting mobile applications – user interfaces for mobile applications – touch events and gestures – Achieving quality constraints – performance, usability, security, availability and modifiability | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Advanced Design
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Technology I ? Android
|
|||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Technology Ii - IOS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Objective C – iOS features – UI implementation – Touch frameworks – Data persistence using Core Data and SQLite – Location aware applications using Core Location and Map Kit – Integrating calendar and address book with social media application – Using Wifi - iPhone marketplace. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012 T2. Charlie Collins, Michael Galpin and Matthias Kappler, “Android in Practice”, DreamTech, 2012. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. James Dovey and Ash Furrow, “Beginning Objective C”, Apress, 2012 R2. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, “Beginning iOS 6 Development: Exploring the iOS SDK”, Apress, 2013. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM644E4 - UNDER WATER ROBOTICS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The course should enable the students to demonstrate knowledge and understanding of: 1. The range of underwater robotic systems in operation and their applications. 2. The impact of mission specific requirements on vehicle design. 3. Manoeuvring simulations of underwater robots. 4. Software architectures for maritime robots.
5. Practical control system design for depth and heading control of underwater robots. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Develop a basic understanding of under water robotics. (L2) CO2: Understand the main approaches to control of the underwater robotics. (L2) CO3: Understand the engineering concepts in underwater robotics. (L2) CO4: Recognize problems in autonomous underwater system. (L2) CO5: Describe the applications of underwater robotics. (L2) |
Unit-1 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO UNDERWATER ROBOTICS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Robotics in Water - Basics Representation of Underwater Robot - Types and Classification of Underwater Robotics - Differentiating Aerial and Underwater Robotics - why it is called an perfect engineering product - Overview about Environmental Factors affecting object in water | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||
CONTROL OF THE UNDERWATER ROBOTICS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Control System and Types of Control Systems in Underwater Robotics - Sensors Connected with the Underwater Robotics - Introduction to Underwater Manipulators - Applications of Underwater Vehicles | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||
ENGINEERING CONCEPTS IN UNDERWATER ROBOTICS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Fluid Dynamics - Studying of FD Model - Computation Fluid Dynamics on Water Bodies Introduction to Hydraulics - Hydraulics Acting on an Object - Hydraulics as Underwater Pressure Compensator Introduction to Pressure Dynamics - Buoyancy Concept - Studying various Polymers in Buoyancy and Pressure Calculations Introduction to Electrical Power Driven Systems - Studying Different Types - PLC and HMI Interface Systems an Overlook - Electrical Archaeology of Systems | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||
AUTONOMOUS UNDERWATER SYSTEM
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to AUVS - Development of AUV / ROV in Market - Case Study on AUV Control System Basics - Case Study on Subsea Manipulator - Case Study on Technologies Used | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
APPLICATIONS OF UNDERWATER ROBOTICS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Case Studies and procedure for design of underwater robots- offshore oil and gas industries, applications in maritime search and rescue and environmental monitoring | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Gianluca Antonelli, Underwater Robots (Springer Tracts in Advanced Robotics),
Springer; 3rd ed. 2014. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1.Steven W. Moore, Harry Bohm and Vickie, Underwater Robotics: Science, Design &
Fabrication MATE Center, 2013. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
ECOE761E01 - AUTOMOTIVE ELECTRONICS (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The aim of this course is to enable student to understand the complete dynamics of automotive electronics, design and implementation of the electronics that contributes to the safety of the automobiles, add-on features, and comforts. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Implement various control requirements in the automotive system CO2: Comprehend dashboard electronics and engine system electronics CO3: Identify various physical parameters that are to be sensed and monitored for maintaining the stability of the vehicle under dynamic conditions CO4: Understand and implement the controls and actuator system pertaining to the comfort and safety of commuters CO5: Design sensor network for mechanical fault diagnostics in an automotive vehicle |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Text Books And Reference Books: T1.A William B. Ribbens, "Understanding Automotive Electronics",6th Edition SAMS/Elsevier publishing, 2007 | |
Essential Reading / Recommended Reading R1. Robert Bosch Gmbh,"Automotive Electrics and Automotive Electronics-Systems and Components, Networking and Hybrid Drive", 5th Edition, Springer, Vieweg, 2007 | |
Evaluation Pattern Components of the CIA | |
NCCOE02 - NCC2 (2021 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
This Course is offered for cadets of NCC who have successfully completed their 'B' or 'C'- Certificate in NCC. This Course is offered in Lieu of the Open Elective course offered by the department during the 7th Semester. · On Successful Completion of the 'B' or 'C'- Certificate course that is conducted by the NCC Directorate Centrally. Marks will be awarded for 100 marks. |
|
Learning Outcome |
|
CO1: Demonstrate Foot drill, Rifle Drill and ceremonial Drill(L3) CO2: Illustrate the importance and need for National integration(L2) CO3: Make use of Leadership traits to organize critical decisions (L3) CO4: Relate to Social Issues and contribute to the Environmental sustainability (L2) CO5: Utilize Community Development skills for social wellbeing(L3) |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-1 |
Teaching Hours:9 |
Drill
|
|
Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-2 |
Teaching Hours:9 |
National Integration
|
|
Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security. | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-3 |
Teaching Hours:9 |
Leadership
|
|
Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description Case Studies: Shivaji, Jhasi Ki Rani | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-4 |
Teaching Hours:9 |
Social Issues and the Environment
|
|
Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products. Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196 | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Unit-5 |
Teaching Hours:9 |
Community Development
|
|
Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp). | |
Text Books And Reference Books: Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015. | |
Essential Reading / Recommended Reading Textbook of Environmental Studies for Undergraduate Courses, Erach Barucha, Orient Black swan Pvt Ltd, 2nd edition, march 2021 | |
Evaluation Pattern The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following. · Each cadet will appear for 'B' or 'C'- Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350. · Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet.
| |
RM733 - CONTROL SYSTEM (2021 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
● To teach the fundamental concepts of control systems & mathematical modelling of system. ● To study the concept of time response and frequency response of the system. ● To teach the basics of stability analysis of the system. |
|
Learning Outcome |
|
CO-1: Understand the modelling of linear invariant systems using transfer function and state space representations CO-2: Design simple feedback controllers CO-3: Understand the concept of stability and its assessment for linear time invariant systems. CO-4: Analyze the stability of a linear continuous- time system using method of Bode plot, polar plot and Nyquist plot for systems. CO-5: Compare continuous-time systems in state space form with decomposition technics and simplify transfer function from state space model |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to control problem- Industrial Control examples. Transfer function. System with dead-time. System response. Control hardware and their models: Closed-loop systems. Block diagram and signal flow graph analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Controllers
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. Feed- forward and multi-loop control configurations, stability concept, relative stability, Routh stability criterion. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Time response of second-order systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Time response of second-order systems, steady-state errors and error constants. Performance specifications in time-domain. Root locus method of design. Lead and lag compensation. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Frequency-response analysis
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquist stability criterion. Performance specifications in frequency-domain. Frequency- domain methods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation. Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
State variable Analysis
|
|||||||||||||||||||||||||||||||||||||||||||||||||
State variable Analysis- Concepts of state, state variable, state model, state models for linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability & observability. Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, trekking problem. Nonlinear system – Basic concept & analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Gopal. M., “Control Systems: Principles and Design”, Tata McGraw-Hill, 1997. T2. Kuo, B.C., “Automatic Control System”, Prentice Hall, sixth edition, 1993. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Ogata, K., “Modern Control Engineering”, Prentice Hall, second edition, 1991. R2. Nagrath & Gopal, “Modern Control Engineering”, New Age International, New Delhi. R3. Ambikapathy A., Control System, Khanna Book Publishing Company, 2018. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM741E1 - RAPID PROTOTYPING (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Apply the basic principles of rapid prototyping (RP), rapid tooling (RT), and reverse engineering (RE) technologies to product development. (L3) CO-2: Decipher the limitations of RP, RT, and RE technologies for product development. (L3) CO-3: Realise the application of RP, RT, and RE technologies for product development. (L3) CO-4: Describe product development, conceptual design and classify rapid prototyping systems; explain stereo lithography process and applications. (L2) CO-5: Explain direct metal laser sintering, LOM and fusion deposition modelling processes. (L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Need for time compression in product development, Product development – conceptual design – development – detail design – prototype – tooling. Classification of RP systems, Stereo lithography systems – Principle – process parameters – process details – machine details, Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2: DIRECT METAL LASER SINTERING (DMLS) SYSTEM
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Principle – process parameters – process details – machine details, Applications. Fusion Deposition Modelling – Principle – process parameters – process details – machine details, Applications. Laminated Object Manufacturing – Principle – process parameters – process details – machine details, Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3: SOLID GROUND CURING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Principle – process parameters – process details – machine details, Applications. 3-Dimensional printers – Principle – process parameters – process details – machine details, Applications, and other concept modellers like thermo jet printers, Sanders model maker, JP system 5, Object Quadra system | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4: APPLICATIONS OF RAPID PROTOTYPING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Laser Engineering Net Shaping (LENS), Ballistic Particle Manufacturing (BPM) – Principle. Introduction to rapid tooling – direct and indirect method, software for RP – STL files, Magics, Mimics. Application of Rapid prototyping in Medical field. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5: VIRTUAL PROTOTYPING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Virtual prototyping- End to end prototyping- simulation components of virtual prototyping- effects- economics of virtual prototyping. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: Text Books: T1. Chua C.K., Leong K.F. and Lim C.S., ―Rapid Prototyping: Principles and Applications‖, 3e, World Scientific Publications, 2010. T2. Paul F Jacobs, ―Rapid Prototyping and Manufacturing–Fundamentals of stereolithography, Society of Manufacturing Engineering Dearborn, USA 1992
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Reference Books: R1. Pham,D.T. and Dimov.S.S., ―Rapid manufacturing, Springer, London, 2001. R2. Joe Cecil, ―Virtual Enginering‖ , Momentum Press, 2010
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM742E2 - PRODUCT DESIGN AND DEVELOPMENT (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
To educate students a clear understanding of factors to be considered in designing parts and components with focus on manufacturability. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Identify and analyse the product design and development processes in manufacturing industry. (L1) CO2: Define the components and their functions of product design and development processes and their relationships from concept to customer over whole product lifecycle. (L2) CO3: Analyse, evaluate and apply the methodologies for product design, development and management. (L5) CO4: Carry out cost and benefit analysis through various cost models. (L5) CO5: Be familiar with the design protection and Intellectual Property.(L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
THE MORPHOLOGY OF DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
(The seven phases) - Primary design phases and flowcharting - Role of allowance - Process capability and Tolerance in detailed design & assembly. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO PRODUCT DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Asimow’s model: Definition of product design - Design by evolution - Design by innovation - Essential factors of Product design - Production-Consumption cycle - Flow and value addition in the Production- Consumption cycle. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
REVIEW OF STRENGTH, STIFFNESS AND RIGIDITY CONSIDERATIONS IN PRODUCT DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Principal stress trajectories (Force-Flow lines) - Balanced design - Criteria and objectives of Design - Material Toughness: Resilience designing for uniform strength - Tension vis-à-vis Compression. Review of production processes - Machining processes - Non-Traditional machining Processes. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
PRODUCT DESIGN PRACTICE AND INDUSTRY
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction - Product Strategies - Time to Market - Analysis of the product - The S’s Standardization - Renard Series – Simplification - Role of Aesthetics in Product Design - Functional Design Practice. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
DESIGN FOR PRODUCTION-METAL PARTS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Producibility requirements in the Design of machine components design - Forging design - Pressed component design - Casting design - Design for machining ease - The role of process engineer - Ease of location casting and special casting. Designing with plastic rubber, ceramics and wood: Approach to design with plastics - plastic bush bearings - gears in plastics - rubber parts - design recommendations for rubber parts - ceramic and glass parts. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
OPTIMIZATION IN DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction - Siddal’s classification of design approach - Optimization by differential calculus - Legrange Multipliers - Linear programming (Simplex Method) - Geometric programming - Johnson’s method of optimum design. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
ECONOMIC FACTOR INFLUENCING DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Product Value - Design for safety - Reliability and environmental considerations - Manufacturing operations in relation to Design - Economic analysis - Profit and Competitiveness - Break-Even analysis - Economic of a new product design. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
HUMAN ENGINEERING CONSIDERATION IN PRODUCT DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction - Human being as applicator of forces - Anthropometry; Man as occupant of space - The design of controls - The design of displays - Man/Machine information exchange. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
VALUE ENGINEERING AND PRODUCT DESIGN
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction - Historical perspective - What is value? Nature and measurement of value - Normal degree of value - Importance of value - the value analysis job plan – creativity - Steps to problemsolving and value analysis - Value analysis test - Value engineering idea generation check-list cost reduction through value engineering case study on Tap switch control assembly. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
MATERIAL AND PROCESS SELECTION IN VALUE ENGINEERING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Modern approach to product design: Concurrent design and Quality function deployment (QFD). | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. A.C. Chitale and R.C. Gupta, “Product Design and Manufacturing, 6 th edition, PHI, 2011. 2. Karl T.Ulrich & Steven D, Epinger, “Product Design & Development”, 4th edition, Tata Mc. Graw Hill, 2007. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Tim jones, Butterworth Heinmann, “New Product Development”, Oxford, mc 1997. 2. Roland EngeneKinetovicz, “New Product Development: Design & Analysis” John Wiley and Sosn Inc., N.Y.1990. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM742E4 - SAFETY ENGINEERING (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Gain the knowledge in safety rules, standards and codes in various mechanical engineering processes. (L1) CO-2: Design machine guarding systems for various machines such as lathe, drilling, boring, milling etc.(L2) CO-3: Implement the safety concepts in welding, gas cutting, storage and handling of gas cylinders, metal forming processes etc.(L3) CO-4: Demonstrate the knowledge in testing and inspection as per rules in boilers, heat treatment operations etc. (L3) CO-5: Outline preventive measures in health and welfare of workers aspects in engineering industry.(L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
SAFETY IN METAL WORKING MACHINERY AND WOOD WORKING MACHINES
|
|||||||||||||||||||||||||||||||||||||||||||||||||
General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electric. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
PRINCIPLES OF MACHINE GUARDING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing- guard construction- guard opening. Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses-forge hammer-flywheels-shafts-couplings-gears-sprockets wheels and chains-pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
SAFETY IN WELDING AND GAS CUTTING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases-colour coding – flashback arrestor – leak detection-pipe line safety-storage and handling of gas cylinders. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
SAFETY IN COLD FARMING AND HOT WORKING OF METALS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes. Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures. Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
SAFETY IN FINISHING, INSPECTION AND TESTING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Heat treatment operations, electro plating, paint shops, sand and shot blasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation. Health and welfare measures in engineering industry-pollution control in engineering industry, industrial waste disposal. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Heinrich H. W, “Industrial accident prevention”, McGraw Hill Company, New York, 1980 T2. Frank P. Lees, “Loss prevention in process industries”, Vol. I, II & III, Butterworth, London, 1980 T3. Brown D. B, “System analysis and design for safety” Prentice Hall, New Jercy, 1976 T4. “Accident Prevention Manual” – NSC, Chicago, 1982. 2. “Occupational safety Manual” BHEL, Trichy, 1988. 3. “Safety Management by John V. Grimaldi and Rollin H. Simonds, All India Travelers Book seller, New Delhi, 1989. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Derek James, “Fire prevention hand book”, Butter Worths and Company, London, 1986 R2. “Accident prevention manual for industrial operations”, National Safety Council, Chicago, 1989 R3. Clayton and Clayton, “Patty’s industrial hygiene and toxicology”, Vol. I, II & III, Wiley Interscience R4. “Safety in Industry” N.V. Krishnan Jaico Publishery House, 1996. R5. Indian Boiler acts and Regulations, Government of India. R6. Safety in the use of wood working machines, HMSO, UK 1992. R7. Health and Safety in welding and Allied processes, welding Institute, UK, High Tech. Publishing Ltd., London, 1989. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM744E3 - HYBRID-ELECTRIC VEHICLES (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The course should enable the students: 1. To understand the principles of traction 2. To understand the characteristics of hybrid vehicles 3. To differentiate various motors and drives 4. To integrate various subsystems 5. To understand energy conservation principles in hybrid vehicles |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: To understand concepts of hybrid and electric drive configuration {L2} CO2: To explain about different types of electric machines that can be used, suitable energy storage devices etc. {L2} CO3: To identify the application of various drive components {L3} CO4: To select of proper component for particular applications. {L3} CO5: To understand different strategies used for energy management. {L2} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
HYBRID VEHICLES
|
|||||||||||||||||||||||||||||||||||||||||||||||||
History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
HYBRID TRACTION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
MOTORS AND DRIVES
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTEGRATION OF SUBSYSTEMS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
ENERGY MANAGEMENT STRATEGIES
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Bimal K. Bose, Power Electronics and Motor drives, Elsevier, 2011. T2. Iqbal Hussain, Electric and Hybrid Vehicles: Design Fundamentals, 2nd edition, CRC Pr I Llc, 2010 T3 Lyla B Das,” Embedded Systems-An Integrated Approach”, Pearson, 2013. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Sira -Ramirez, R. Silva Ortigoza, Control Design Techniques in Power Electronics Devices, Springer, 2006. R2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, Sliding mode control of switching Power Converters, CRC Press, 2011. R3. Ion Boldea and S.A Nasar, Electric drives, CRC Press, 2005. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM751 - AUTOMATION AND PLC LABORATORY (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The series of experiments encompass a comprehensive exploration of Programmable Logic Controller (PLC) programming and its applications. Beginning with an introduction to ladder logic, Boolean algebra, and PLC configuration, participants delve into practical exercises involving logic gates, counters, and down counters. Subsequent exercises focus on programming techniques, including mathematical operations and latch control circuits. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO-1: Demonstrate proficiency in PLC programming, including the ability to design, implement, and troubleshoot control systems using ladder logic and Boolean algebra. (L3). CO-2: Apply their knowledge of PLC programming to develop and optimize a variety of control systems, ranging from basic logic gates to more complex applications like motor control circuits and automated car parking systems. (L3). CO-3: Develop strong problem-solving and optimization skills, enabling them to analyze control system requirements, identify issues, and implement effective solutions to enhance system performance and efficiency. (L5). |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||
| |||||||||||||||||||||||||
Text Books And Reference Books: John W. Webb & Ronald A. Reis, Programmable Logic Controllers – Principles and Applications, Fifth Edition, Pearson Education (2008). | |||||||||||||||||||||||||
Essential Reading / Recommended Reading John R. Hackworth & Frederick D. Hackworth Jr, Programmable Logic Controllers – Programming Methods and Applications, Pearson (2011). | |||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||
RM781 - PROJECT WORK PHASE - I (2021 Batch) | |||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||
Max Marks:100 |
Credits:2 |
||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||
Project work Phase-I includes identifying the problem, literature review and necessary ground work so as to continue it as Phase-II during VIII semester. Presentations on these are to be given as per the schedule announced by the department. |
|||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||
CO-1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2] CO-2: Develop a skill for handling multiple situations, practical problems, analyzing teamwork and communication abilities. [L2] CO-3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L3] CO-4: Analyze the work environment and create solutions to problems. [L4] CO-5: Build a record of work experience and construct a good relationship with the teammates. [L5] |
Unit-1 |
Teaching Hours:60 |
Project
|
|
Continuous Internal Assessment:100 Marks
| |
Text Books And Reference Books: journals | |
Essential Reading / Recommended Reading journals | |
Evaluation Pattern Continuous Internal Assessment:100 Marks Presentation assessed by Panel Members Assessment by the Guide Project Progress Reports
| |
RM782 - INTERNSHIP (2021 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
Internships are short-term work experiences that will allow a student to observe and participate in professional work environments and explore how his interests relate to possible careers. They are important learning opportunities through industry exposure and practices. More specifically, doing internships is beneficial because they provide the opportunity to:
|
|
Learning Outcome |
|
CO1: To experience 60 days of internship training, enabling the student for onsite visits, study projects, and practical training. {L4} CO2: To develop a skill for handling multiple situations, practical problems, analyzing teamwork, and communication abilities. {L2} CO3: To integrate theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. {L3} |
Unit-1 |
Teaching Hours:60 |
INTERNSHIP
|
|
| |
Text Books And Reference Books: T1.Pamela Myers Kiser, “Human Services Internship: Getting the Most From Your Experience”, Cengage Learning, 4th Edition, 2016. (ISBN13: 978-1305087347) T2.H. Frederick Sweitzer, “Successful Internship”, Brooks/Cole Publishing Co., 5th Edition, 2019. | |
Essential Reading / Recommended Reading R1.Bill Hobbs, Zach Schleien, “Hacking the Internship Process (Work)”, La Plata Press, Paperback, 2017. | |
Evaluation Pattern Continuous Internal Assessment (CIA) is based upon ● No of Internship Days : 20 marks ● Type of Industry and Work Carried out : 10 marks ● Report on Internship : 10 marks ● Presentation on Internship : 10 marks | |
RM841E4 - INDUSTRIAL ROBOTICS AND MATERIAL HANDLING SYSTEMS (2021 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The course should enable the students: • To introduce the basic concepts, parts of robots and types of robots. • To make the student familiar with the various drive systems for robot, sensors and their applications in robots and programming of robots. • To select the robots according to its usage. • To discuss about the various applications of robots, justification and implementation of robot. • To know about material handling in a system. |
|
Learning Outcome |
|
CO1: Learn about the basic concepts, parts of robots and types of robots. CO2: To design automatic manufacturing cells with robotic control using the principle behind robotic drive system, end effectors, sensor, machine vision robot kinematics and programming. CO3: Ability in selecting the required robot. CO4: Know various applications of robots CO5: Apply their knowledge in handling the materials. |
Unit-1 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Types of industrial robots, Load handling capacity, general considerations in Robotic material handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot centered cell. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||
ROBOTS FOR INSPECTION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Robotic vision systems, image representation, object recognition and categorization, depth measurement, image data compression, visual inspection, software considerations. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||
OTHER APPLICATIONS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Application of Robots in continuous arc welding, Spot welding, Spray painting, assembly operation, cleaning, robot for underwater applications. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:11 |
||||||||||||||||||||||||||||||||||||||||||||||||
END EFFECTORS
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Gripper force analysis and gripper design, design of multiple degrees of freedom, active and passive grippers. SELECTION OF ROBOT: Factors influencing the choice of a robot, robot performance testing, economics of robotisation, Impact of robot on industry and society. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||||||||||
MATERIAL HANDLING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Concepts of material handling, principles and considerations in material handling systems design, conventional material handling systems - industrial trucks, monorails, rail guided vehicles, conveyor systems, cranes and hoists, advanced material handling systems, automated guided vehicle systems, automated storage and retrieval systems(ASRS), bar code technology, radio frequency identification technology. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Richaerd D Klafter, Thomas Achmielewski and Mickael Negin, “Robotic Engineering – An integrated Approach” Prentice HallIndia, New Delhi, 2001. T2. Mikell P. Groover,”Automation, Production Systems, and Computer Integrated Manufacturing“, 2nd Edition, John Wiley & sons, Inc, 2007. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. James A Rehg, “Introduction to Robotics in CIM Systems”, Prentice Hall of India, 2002. R2. Deb S R, "Robotics Technology and Flexible Automation", Tata McGraw Hill, New Delhi, 1994. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM841E5 - PROCESS PLANNING AND COST ESTIMATION (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The course should enable the students to: ● Understand the basic concepts of process Planning and estimation and ● Apply different methods of cost estimation in different manufacturing shops ● Learn the concepts of process planning and cost estimation in competitive manufacturing systems and organizations. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Select the process, equipment and tools for various industrial products. CO2: Develop process planning activity chart. CO3: Explain the concept of cost estimation. CO4: Solve the job order cost for different type of shop floor. CO5: Calculate the machining time for various machining operations. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO PROCESS PLANNING
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
PROCESS PLANNING ACTIVITIES
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
INTRODUCTION TO COST ESTIMATION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material costallocation of overhead charges- Calculation of depreciation cost | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
PRODUCTION COST ESTIMATION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
MACHINING TIME CALCULATION
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring -Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Peter scalon, “Process planning, Design/Manufacture Interface”, Elsevier science technology Books, Dec 2002. T2. Sinha B.P, “Mechanical Estimating and Costing”, Tata-McGraw Hill publishing co, 1995. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Chitale A.V. and Gupta R.C., “Product Design and Manufacturing”, 2nd Edition, PHI, 2002. R2. Ostwalal P.F. and Munez J., “Manufacturing Processes and systems”, 9th Edition, John Wiley, 1998. R3. Russell R.S and Tailor B.W, “Operations Management”, 4th Edition, PHI, 2003. R4. Mikell P. Groover, “Automation, Production, Systems and Computer Integrated Manufacturing”, Pearson Education 2001. R5. K.C. Jain & L.N. Aggarwal, “Production Planning Control and Industrial Management”, Khanna Publishers 1990. | |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
RM881 - PROJECT WORK PHASE-II (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:90 |
No of Lecture Hours/Week:16 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:300 |
Credits:10 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
Students in a group of maximum four work on a project. The nature of project may be a design and fabrication, modelling and analysis, a case study, etc. The project may also be taken at an industry ot research organisation with the permission from the department. The faculty member will be assigned as an internal guide who will monitor assess the progress regularly. A report on the project work in the approved format is to submitted on or before the dates announced by the department. Examination requires demonstration of the project in the presence of an external examiner. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2] CO2: Develop a skill for handling multiple situations, practical problems, analyzing team work and communication abilities. [L4] CO3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L5] CO4: Analyze the work environment and create solutions to problems. [L4] CO5: Build a record of work experience and construct a good relationship with the teammates. [L4] |
Unit-1 |
Teaching Hours:300 |
Projects Based on Specilaistions
|
|
Specializations include: Design Thermal Manufacturing Materials Management Etc...
| |
Text Books And Reference Books: The theme of the Project related journal papers and reference books. | |
Essential Reading / Recommended Reading The theme of the Project related journal papers and reference books. | |
Evaluation Pattern CIA -200M Review - 1 : 50 marks Review - 2 : 60 marks Review - 3 : 90 marks ESE-100M Initial Write Up : 15 marks Viva Voce: 25 marks Demonstration: 35 marks Project Report: 25 marks |