CHRIST (Deemed to University), Bangalore

DEPARTMENT OF MECHANICAL AND AUTOMOBILE ENGINEERING

School of Engineering and Technology






Syllabus for
BTech (Robotics and Mechatronics)
Academic Year  (2024)

 

BS351 - ENGINEERING BIOLOGY LABORATORY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 
  • To understand Biological concepts from an engineering perspective

Learning Outcome

CO1: Examine the various applications of bioengineering and using common tool boxes for analysing medical information.

Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Text Books And Reference Books:

Nil

Essential Reading / Recommended Reading

Nil

Evaluation Pattern

Observation - 10 marks

Record - 10 marks

Conduction - 30 marks

CE351 - SUSTAINABLE GREEN TECHNOLOGY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course comprehensively deals with interdisciplinary engineering and design processes to achieve sustainability in the area of renewable energy, resources and waste management through experiential learning

Learning Outcome

CO1: Demonstrate a clear understanding and application of sustainability principles to develop and implement green technologies.

CO2: Develop sustainable solutions to solve pressing issues in the area of Energy, Waste and Resource management.

Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Text Books And Reference Books:

1.Rogers, Peter P., Kazi F. Jalal, and John A. Boyd. "An introduction to sustainable development." (2012).

2.Kerr, Julie. Introduction to energy and climate: Developing a sustainable environment. CRC Press, 2017.

Essential Reading / Recommended Reading

Based on alloted  projects  students need to refer respective journal publications reference materials.

Evaluation Pattern

Students would be assessed both continously and stage wise

Students would be assessed  after every engagement for submissions and progress achived with respect to project- 50 marks

Students projects at the end of semester  would be assessed for  50 marks by panel constituted by the department- 50 marks

EVS321 - ENVIRONMENTAL SCIENCE (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:0
Credits:0

Course Objectives/Course Description

 

To understand the scope and importance of environmental science towards developing a conscious community for environmental issues, both at global and local scale.  

Learning Outcome

CO1: Explain the components and concept of various ecosystems in the environment (L2, PO7)

CO2: Explain the necessity of natural resources management (L2, PO1, PO2 and PO7)

CO3: Relate the causes and impacts of environmental pollution (L4, PO1, PO2, and PO3, PO4)

CO4: Relate climate change/global atmospheric changes and adaptation (L4,PO7)

CO5: Appraise the role of technology and institutional mechanisms for environmental protection (L5, PO8)

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Text Books And Reference Books:

T1Kaushik A and Kaushik. C. P, “Perspectives in Environmental Studies”New Age International Publishers, New Delhi, 2018 [Unit: I, II, III and IV]

T2Asthana and Asthana, “A text Book of Environmental Studies”, S. Chand, New Delhi, Revised Edition, 2010 [Unit: I, II, III and V]

T3Nandini. N, Sunitha. N and Tandon. S, “environmental Studies” , Sapana, Bangalore,  June 2019 [Unit: I, II, III and IV]

T4R Rajagopalan, “Environmental Studies – From Crisis to Cure”, Oxford, Seventh University Press, 2017, [Unit: I, II, III and IV]

 

Essential Reading / Recommended Reading

R1.Miller. G. T and Spoolman. S. E, “Environmental Science”, CENAGE  Learning, New Delhi, 2015

R2.Masters, G andEla, W.P (2015), Introduction to environmental Engineering and Science, 3rd Edition. Pearson., New Delhi, 2013.

R3.Raman Sivakumar, “Principals of Environmental Science and Engineering”, Second Edition, Cengage learning Singapore, 2005.

R4.P. Meenakshi, “Elements of Environmental Science and Engineering”, Prentice Hall of India Private Limited, New Delhi, 2006.

R5.S.M. Prakash, “Environmental Studies”, Elite Publishers Mangalore, 2007

R6.ErachBharucha, “Textbook of Environmental Studies”, for UGC, University press, 2005.

R7. Dr. Pratiba Sing, Dr. AnoopSingh and Dr. PiyushMalaviya, “Textbook of Environmental and Ecology”, Acme Learning Pvt. Ltd. New Delhi.

Evaluation Pattern

No Evaluation

MA335 - MATHEMATICS-III (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To enable the students to find the Fourier series and harmonic analysis of a periodic function, solve the boundary value problems using Fourier series, ordinary differential equations by series solution method and describe functionals and solve variational problems.

Learning Outcome

CO1: Representation linear transformation as a matrix. (L2)

CO2: Apply vector operators to transform the Cartesian coordinate system into spherical and cylindrical forms. (L3)

CO3: Estimate results by forward and backward interpolation. (L4)

CO4: Deduce the periodic functions as Fourier series expansion. (L4)

CO5: Predict the nature of partial differential equations and solve it by the method of variable separable. (L3)

Unit-1
Teaching Hours:9
Linear Transformation
 

Introduction to Linear Transformations, properties of linear transformation, Matrix representation of a linear transformation

Unit-2
Teaching Hours:9
Coordinate Systems
 

Curvilinear Coordinate System, Gradient, divergent, curl and Laplacian in cylindrical and Spherical Coordinate system, Transformation between systems.

Unit-3
Teaching Hours:9
Numerical Interpolation
 

Newton’s forward and backward interpolation, Newton’s divided difference method, Lagrange’s interpolation and inverse interpolation

Unit-4
Teaching Hours:9
Fourier Series
 

Periodic functions, Dirichlet’s conditions, General Fourier series, Odd and even functions, Half range sine and cosine series, Harmonic Analysis.

Unit-5
Teaching Hours:9
Partial Differential Equations
 

Formation of PDE, Solution of homogeneous PDE involving derivative with respect to one independent variable only (Both types with given set of conditions), solution of non- homogeneous PDE by direct integration, Solution of Lagrange’s linear PDE of the type P p +Q q= R

Text Books And Reference Books:

T1. Dr. B. Grewal, “Higher Engineering Mathematics”, 43rd Edition, Khanna Publishers, July 2014.

T2. H. K. Das & Rajnish Verma, “Higher Engineering Mathematics”, 20th Edition, S. Chand & Company Ltd., 2012

Essential Reading / Recommended Reading

R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 10th Edition, John Wiley & Sons,Inc. 2011.

R2. B.V. Ramana, 6th Reprint, “Higher Engineering Mathematics”, Tata-Macgraw Hill, 2008

R3. George F. Simmons and Steven G. Krantz, “Differential Equation, Theory, Technique and Practice”, Tata McGraw – Hill, 2006.

R4. M. D. Raisinghania, “Ordinary and Partial Differential Equation”, Chand (S.) & Co. Ltd., India, March 17, 2005

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

MAHO331DMP - DESIGN FOR ADDITIVE MANUFACTURING (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Additive Manufacturing (AM) is an economically viable alternative to conventional manufacturing technologies for producing highly complex parts. The main objective of this course is to acquaint students with the concept of AM, various AM technologies, selection of materials for AM, modeling of AM processes, and their applications in various fields. The course will also cover AM process plan including building strategies and post-processing.

Learning Outcome

CO1: Demonstrate the knowledge of Additive Manufacturing and Rapid Prototyping technologies. {L2}

CO2: Describe different RP techniques used by manufacturing industries. {L2}

CO3: Discuss the fundamentals of various mechanisms used in modern machine tools to accommodate additive manufacturing. {L2}

CO4: Analyze various reverse engineering techniques in preparing STL models and 3D- CAD models to incorporate in rapid prototyping techniques. { L3}

CO5: Examine various techniques in additive manufacturing techniques for preparing a better product. {L2}

Unit-1
Teaching Hours:9
Introduction
 

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing.

Unit-1
Teaching Hours:9
Introduction
 

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing.

Unit-1
Teaching Hours:9
Introduction
 

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing.

Unit-2
Teaching Hours:9
Additive manufacturing Techniques
 

Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM).

Unit-2
Teaching Hours:9
Additive manufacturing Techniques
 

Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM).

Unit-2
Teaching Hours:9
Additive manufacturing Techniques
 

Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM).

Unit-3
Teaching Hours:9
CNC Technology
 

Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing

Unit-3
Teaching Hours:9
CNC Technology
 

Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing

Unit-3
Teaching Hours:9
CNC Technology
 

Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing

Unit-4
Teaching Hours:9
3D Modelling
 

Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials.

Unit-4
Teaching Hours:9
3D Modelling
 

Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials.

Unit-4
Teaching Hours:9
3D Modelling
 

Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials.

Unit-5
Teaching Hours:9
additive manufacturing tooling accuracy
 

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

Unit-5
Teaching Hours:9
additive manufacturing tooling accuracy
 

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

Unit-5
Teaching Hours:9
additive manufacturing tooling accuracy
 

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

Text Books And Reference Books:

Units

Teaching Hours

Unit-1                                                  Introduction

Overview, Basic principle need and advantages of additive manufacturing, Procedure of product development in additive manufacturing, Classification of additive manufacturing processes, Materials used in additive manufacturing, Challenges in Additive Manufacturing.

9

Unit-2                                  

Z-Corporation 3D-printing, Stereolithography apparatus (SLA), Fused deposition modeling (FDM), Laminated Object Manufacturing (LOM), Selective deposition lamination (SDL), Ultrasonic consolidation, Selective laser sintering (SLS), Laser engineered net shaping (LENS), Electron beam free form fabrication (EBFFF), Electron beam melting (EBM), Plasma transferred arc additive manufacturing (PTAAM), Tungsten inert gas additive manufacturing (TIGAM), Metal inert gas additive manufacturing (MIGAM).

9

Unit-3   

Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors. Introduction to NC/CNC/DNC machine tools, CNC programming and introduction, Hardware Interpolators, Software Interpolators, Recent developments of CNC systems for additive manufacturing

9

Unit-4                                            

Preparation of 3D-CAD model, Reverse engineering, Reconstruction of 3D-CAD model using reverse engineering, Part orientation and support generation, STL Conversion, STL error diagnostics, Slicing and Generation of codes for tool path, Surface preparation of materials.

9

Unit-5                            

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, Brief information on characterization techniques used in additive manufacturing, Applications of additive manufacturing in rapid prototyping, rapid manufacturing, rapid tooling, repairing and coating.

9

Essential Reading / Recommended Reading

Text Books:

T1. Gibson, I, Rosen, D W., and Stucker,B., Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.

 

T2. Chua C.K., Leong K.F., and Lim C.S., “Rapid prototyping: Principles and applications”, Third Edition, World Scientific Publishers, 2010.

 

T3. Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth Edition of Rapid Prototyping, World Scientific Publishers, 2014.

 

T4. Gebhardt A., “Rapid prototyping”, Hanser Gardener Publications, 2003.

Reference Books:

1.   Liou L.W. and Liou F.W., “Rapid Prototyping and Engineering applications: A tool box for prototype development”, CRC Press, 2007

 

2.   Kamrani A.K. and Nasr E.A., “Rapid Prototyping: Theory and practice”, Springer, 2006

 

3.   Mahamood R.M., Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG 2018

 

4.   Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, “Laser Cladding”, CRC Press, 2004

Online Resources:

W1. http://www.digimat.in/nptel/courses/video/112104204/L47.html

Evaluation Pattern

Total Hrs in a semester

CIA I -Evaluated out of (20/30)

CIA I cnverted to (10)

CIA II - Evaluated out of (50)

CIA II cnverted to ( 25/ ) 

Mention Whether CIA II is Centralized exam or department level Assessment

CIA III - Evaluated out of (20/30)

CIA III cnverted to (10)

Total CIA

Total CIA is scaled down to 20/45/55/65

If CIA is final Submission -Evaluated out of

Is there CIA minimum, if yes give the minimum CIA

Att. Marks

ESE Evaluated out of (50/100)

ESE converted to (50/100)

75

20

10

10

25

Centralized

20

10

90

65

50

20

5

100

30

OEC371 - NCC3 (2023 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:50
Credits:1

Course Objectives/Course Description

 

This course is designed to provide a holistic development program combining personality enhancement, physical training, leadership skills, and technical expertise. Students will engage in physical training, learn fundamental drill techniques, and gain hands-on experience in aviation, including airmanship, aircraft forces, and specific technical details of the ZENAIR CH 701. The course also includes practical exercises such as obstacle courses and social service activities to foster leadership and community involvement. Through a blend of theoretical knowledge and practical skills, students will be well-prepared for roles requiring both personal development and technical proficiency.

Develop self-awareness, confidence, and leadership qualities through structured personality development and leadership training.

Understand the principles of airmanship and the forces acting on aircraft to enhance operational knowledge in aviation.

Engage in social service activities to build leadership skills and contribute positively to the community.

Learning Outcome

CO1: Develop and apply self-awareness, effective communication, and time management skills to enhance personal confidence and leadership capabilities.

CO2: Apply principles of airmanship and technical knowledge to ensure safe and effective flight operations, including understanding aerodynamic forces and performing maintenance on the ZENAIR CH 701 aircraft.

CO3: Demonstrate effective application of leadership and teamwork skills through the successful planning and execution of community engagement activities

Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Evaluation Pattern

Attendance

(5)

Camp Attended(5)

Performance
Contribution
(10)

Personal and
Unit
Development (10)

Written Exam Marks  (20)

Total(50)

 

 

 

 

 

Evaluation Criteria

Excellent

Good

Average

Needs Improvement

Poor

9-10

7-8

6-7

5

0

Attendance

Has Participated in >= 95% of the NCC activities

Has Participated in >= 90%  and <95% of the NCC activities

Has Participated in >= 85%  and <90% of the NCC activities

Has Participated in >= 80%  and <85% of the NCC activities

Has attendance percentage less than 80%

Camp Attended(20)

10

9

6-8

5

0

National camp(RD)

National cam p AIVSC

Other National camps

Unit level Camps

No camps

Performance Contribution

8 – 10

6 – 7

4 – 5

1 – 3

0

Was a self-starter; consistently sought new challenges and asked for additional work assignments; regularly approached and solved problems independently; frequently proposed innovative and creative ideas, solutions, and/or options

Worked without extensive supervision; in some cases, found problems to solve and sometimes asked for additional work assignments; normally set his/her own goals and, in a few cases, tried to exceed requirements; offered some creative ideas

Had little observable drive and required close supervision; showed little if any interest in meeting standards; did not seek out additional work and frequently procrastinated in completing assignments; suggested no new ideas or options

Wasn’t regular.

No new ideas projected or discussed.

Didn’t complete the given tasks in the mentioned time limit.

Hasn’t visited the company.

 

8 – 10

6 – 7

4 – 5

1 – 3

0

Personal and
Professional
Development

Will develop a practical “working knowledge” and understanding of NCC expectations.

 

 

Will develop a practical “working knowledge” and understanding of workplace expectations.

 

 

Will develop a general understanding of workplace expectations.

 

 

Activities participated did not provide/or allow for understanding of workplace expectations.

 

 

Hasn’t Contributed to NCC

OEC372 - ABILITY ENHANCEMENT COURSE III (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

Course Description:

This course covers technical reading and writing practices, professional communication for employment and at the workplace, and foundational mathematical concepts. It includes technical writing, report and proposal writing, listening and reading skills, job application preparation, group discussions, and presentation skills. It also addresses key mathematical topics such as number systems, percentages, data interpretation, ratios, speed, time, distance, and work-related problems. The course concludes with comprehensive training in C programming, covering data types, control flow, arrays, functions, structures, pointers, and file management.

Course Objective:

1. Develop Technical Reading Skills: Equip students with effective reading strategies for comprehending complex technical documents.

2. Enhance Technical Writing Abilities: Teach the processes involved in writing clear and concise technical reports and proposals.

3. Improve Grammar and Editing Skills: Strengthen students' understanding of grammar, voice, speech, and common errors in technical writing.

4. Professional Communication Mastery: Foster skills in professional communication, including job application processes, resume writing, and email etiquette.

5. Group and Interpersonal Communication: Cultivate effective group discussion, interview techniques, and interpersonal communication skills for professional settings.

Learning Outcome

CO1: Proficient Technical Readers and Writers: Students will be able to effectively read and write technical documents, including reports and proposals.

CO2: Grammar and Error Detection: Students will demonstrate improved grammar usage and the ability to identify and correct errors in technical writing.

CO3: Professional Job Application Skills: Students will be capable of creating professional job application documents, such as resumes and cover letters.

CO4: Enhanced Listening and Presentation Skills: Students will show improved listening comprehension and presentation abilities, crucial for professional environments

CO5: Effective Group and Interpersonal Communicators: Students will be skilled in group discussions, job interviews, and interpersonal communication, enhancing their employability and workplace interactions.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Text Books And Reference Books:

1.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success

Author: Gopalaswamy Ramesh and Mahadevan Ramesh

Publisher: Pearson Education India

Edition: 1st Edition (2010).ISBN: 9788131732857.

2.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success

 

Author: Gopalaswamy Ramesh and Mahadevan Ramesh

 

Publisher: Pearson Education India

 

Edition: 1st Edition (2010)

ISBN: 9788131732857                                       

 

 

Essential Reading / Recommended Reading

1. Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

2. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

    Edition: 10th Edition (2022)

    ISBN: 9789354720196

. Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

3. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

    Edition: 10th Edition (2022)

    ISBN: 9789354720196.

Title: Let Us C

    Author: YashavantKanetkar

    Publisher: BPB Publications

    Edition: 17th Edition (2020)

    ISBN: 9789388511393

 

4. Title: Let Us C Solutions

    Author: YashavantKanetkar

    Publisher: BPB Publications

    Edition: 13th Edition (2021)

    ISBN: 9789387284588

 

5. Title: The C Programming Language

    Author: Brian W. Kernighan and Dennis M. Ritchie

    Publisher: Prentice Hall

    Edition: 2nd Edition (1988)

    ISBN: 9780131103627

Evaluation Pattern

Total Credit=1

Overall CIA=50.

RM332P - ANALOG AND DIGITAL ELECTRONICS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course will enable students to:

●     Recall and Recognize construction and characteristics of JFETs and MOSFETs and differentiate with BJT

●     Demonstrate and Analyze Operational Amplifier circuits and their applications

●     Describe and Design Decoders, Encoders, Digital multiplexers, Adders and Subtractors, Binary comparators, Latches and Master-Slave Flip-Flops.

●     Describe, Design and Analyze Synchronous and Asynchronous Sequential circuits..

●     Explain and design registers and Counters, A/D and D/A converters.

Learning Outcome

CO1: Explain the transistor fundamentals including their characteristics. (L2)

CO2: Understand the elements inside an opamp and design basic applications of opamp. (L4)

CO3: Explain the concepts of analog to digital conversion and vice-versa. (L2)

CO4: Understand the fundamental concepts and techniques used in digital processing circuits. (L2)

CO5: Implement sequential logic circuits involving registers and counters. (L2)

CO-6: Demonstrate the Analog and Digital Circuits. (L5)

Unit-1
Teaching Hours:9
TRANSISTOR FUNDAMENTALS
 

Bipolar Junction Transistors: Introduction, Construction of BJT, Current parameters, CE Configuration, DC Biasing: Fixed Bias and Emitter Bias Circuit, RC Coupled Amplifier

Field Effect Transistors: Introduction, Junction Field Effect Transistors: Construction, JFET Characteristics and Transfer Characteristics, MOSFETs: Depletion Type and Enhancement Type, CMOS Devices, MOSFET as switch, Wave Shaping Circuit : Clipper, Clamper

Unit-2
Teaching Hours:9
OPERATIONAL AMPLIFIER
 

Introduction, Operational Amplifier (OpAmps) IC741 pin diagram, Ideal Characteristics of OpAmps, Inverting and Non Inverting Amplifier, Summing Amplifier [Adder], Difference Amplifier [ Subtractor], Comparator, Sample and Hold Circuit, Schmitt Triger, Astable Multivibrator, Monostable Multivibrator. 

Unit-3
Teaching Hours:9
D/A CONVERSION & A/D CONVERSION
 

D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders,

D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dualslope A/D Conversion, A/D Accuracy and Resolution.

Unit-4
Teaching Hours:9
COMBINATIONAL LOGIC
 

Introduction, Combinational Circuits, Analysis Procedure, Design procedure, Binary Adder-Subtractor, Decimal adder, Binary Multiplier, Magnitude Comparator, Decoder, Encoder, Multiplexer, HDL Models of Combinational Circuits. 

Unit-5
Teaching Hours:9
SEQUENTIAL LOGIC
 

Synchronous Sequential logic: Introduction, Sequential Circuits, Storage Elements: Latches, Storage Elements: Flip-Flops, Analysis of Clocked Sequential Circuits, Synthesizable HDL Models of Sequential Circuits.

Registers and Counters: Registers, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters, HDL for Registers and Counters.

Text Books And Reference Books:

T1. Robert L. Boylestad and Louis Nashelsky, “Electronic Devices & Circuit Theory”, 11th edition.

T2. D Roy Chaoudhury and Shail B. Jain, “Linear Integrated Circuits” 4th Edition, New Age Inernational Publisher, 2017.

T3. M. Morris Mano and Michael D. Ciletti, “Digital Design”, 5th Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2015/Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2013

Essential Reading / Recommended Reading

R1. A.P. Malvino, Electronic Principles, Tata Mcgraw Hill Publications.

R2.  William Kleitz, Digital Electronics, Prentice Hall International Inc.

R3. Nagrath, I J, “Electronics Analog and Digital”, New Delhi Prentice-Hall of India 1999 , ISBN:9788120314917

R4. Bhatia, Bhupesh, “Analog and Digital Electronics”, Firewall Media, 2008. ISBN:9788131804346

R5. A.S. Sedra & K.C.Smith, Microelectronics Circuits, Oxford University Press (1997).

Evaluation Pattern

CIA Marks

50

ESE Marks

50

Exam Hours

3 hrs.

RM333P - ELECTRICAL DRIVES AND ACTUATORS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:3

Course Objectives/Course Description

 

At the end of the course, the students would be able to  

       To impart knowledge on the performance characteristics, speed control and starting methods of DC and AC motors.

       To impart knowledge on the basic of selection of drive for a given application.

       To impart knowledge on the concept of controlling the speed of DC and AC motor using Solid state converters.

       To prepare the students to understand, demonstrate and analyze the concepts of DC and AC Motors.

       To prepare the students to understand, demonstrate and analyze the concepts of DC Drive.

  • To prepare the students to understand, demonstrate and analyze the concepts of AC Drive

Learning Outcome

CO-1: Explain the various method of speed control of DC and AC motors.

CO-2: Describe the factors for selection of drive, various load pattern and determine their power rating.

CO-3: Discuss the working of various power semiconductor devices.

CO-4: Demonstrate the working of various power converters and inverters .

CO-5: Apply and Analyze the control of DC and AC motors with solid state power converters and inverters.

CO-6: Conduct the suitable method for speed control of DC and AC motors.

Unit-1
Teaching Hours:10
RELAY AND POWER SEMI-CONDUCTOR DEVICES
 

Study of Switching Devices – Relay and Types, Switching characteristics -BJT, SCR, TRIAC, GTO, MOSFET, IGBT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit -Introduction to Driver and snubber circuits

Unit-2
Teaching Hours:8
DRIVE CHARACTERISTICS
 

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, torque, and Direction starting & stopping – Selection of motor.

Unit-3
Teaching Hours:6
DC MOTORS AND DRIVES
 

DC Servomotor - Types of PMDC & BLDC motors - principle of operation- emf and torque equations- characteristics and control – Drives- H bridge - Single and Three Phases – 4 quadrant operation –Applications

Unit-4
Teaching Hours:11
AC MOTORS AND DRIVES
 

Introduction – Induction motor drives – Speed control of 3-phase induction motor – Stator voltage control – Stator frequency control – Stator voltage and frequency control – Stator current control –Static rotor resistance control – Slip power recovery control.

Unit-5
Teaching Hours:10
STEPPER AND SERVO MOTOR
 

Advantages of Solid State Control - Control of DC Drives using Converters – Choppers – Control of Three Phase Induction Motors using Stator Voltage Control – V/F Control and Slip Power Recovery Schemes using Inverters and AC power regulators.

Text Books And Reference Books:

T1. Gopal K. Dubey, “Fundamentals of Electric Drives”, Narosa Publications, New Delhi, 2nd Edition, 2002.

T2. Kothari D.P., Nagrath I.J., “Electrical Machines”, Tata McGraw Hill Education India Private Limited, New Delhi, 3rd Edition, 2004.

T3. Vedam Subrahmanyam, “Electric Drives: Concept and Application”, Tata McGraw-Hill Education, 2nd Edition, 2011.

Essential Reading / Recommended Reading

R1. Sen P.C., “Principles of Electrical Machines and Power Electronics”, John Wiley Publications Private Limited, 3rd Edition, 2013.

R2. Pillai S.K., “A First course on Electrical Drives”, New Age International Private Limited, New Delhi, 1991.

R3. Bhattacharya, “Electrical Machines”, Tata McGraw Hill Education, 2008.

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

 

Component

Assessed for

Minimum marks to pass

Maximum marks

1

Theory CIA

30

-

30

2

Theory ESE

30

12

30

3

Practical CIA

35

14

35

4

Attendance

05

-

05

4

Aggregate

100

40

100

 

DETAILS OF MARK FOR COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Minimum marks to pass

Maximum marks

Component

Assessed for

Scaled down to

Minimum marks to pass

Maximum marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM334P - BASIC CONCEPTS OF MECHATRONICS AND PLC (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course aims at providing fundamental understanding about the basic elements of a mechatronics system, interfacing, and its practical applications.

Learning Outcome

CO-1: Explain the concepts of mechatronics elements. (L2)

CO-2: Classify and select the sensors and transducers for the different application. (L2)

CO-3: Illustrate the drives and actuators(L2)

CO-4: Explain the concept of PLC and HMI (L3)

CO-5: Write basic PLC ladder programming (L3)

CO-6: Develop ladder programming for different industrial application(L5)

Unit-1
Teaching Hours:9
Introduction
 

Introduction: Definition of Mechanical Systems, Philosophy and approach; Systems and Design: Mechatronic approach, Integrated Product Design, Modeling, Analysis and Simulation, Man-Machine Interface.

Unit-2
Teaching Hours:9
Sensors and transducers
 

Sensors and transducers: classification, Development in Transducer

technology, Opto- Electronics-Shaft encoders, CD Sensors, Vision System, etc.

Unit-3
Teaching Hours:9
Drives and Actuators
 

Actuators: Hydraulic and Pneumatic drives, Electrical Actuators

Drives: Motor drives- DC motors, stepper motor, servo motor

Unit-4
Teaching Hours:9
Programmable Logic Controllers:
 

Programmable Logic Controllers (PLC) based control system, programming languages & instruction set, ladder logic, functional blocks, structured text, and applications. Human Machine Interface (HMI) & Supervisory Control and Data Acquisition System (SCADA); motion controller, applications of RFID technology and machine vision.

Unit-5
Teaching Hours:9
Basics of PLC Programming:
 

Processor Memory Organization, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of Operation, Timers and Counters.

Text Books And Reference Books:

T1. Mechatronics System Design, Devdas Shetty & Richard A. Kolk, PWS Publishing

Company (Thomson Learning Inc.).

T2. Mechatronics: A Multidisciplinary Approach, William Bolton, Pearson Education

T3. A Textbook of Mechatronics, R.K. Rajput, S. Chand & Company Private Limited

T4. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, William Bolton, Prentice Hall.

Essential Reading / Recommended Reading

R1. “MECHATRONICS”, Tata McGraw-Hill Publishing Company Ltd, New Delhi 2005, ISBN: 9780074636435.

R2. Bolton, , “MECHATRONICS”, New Delhi Pearson Education 2003, ISBN:8177582844.

R3. “MECHATRONICS: A FOUNDATION COURSE”, Baton Rouge: Taylor & Francis Group, 2010. ISBN:9781420082128

R4. John W. Webb & Ronald A. Reis, Programmable Logic Controllers – Principles and Applications, Fifth Edition, Pearson Education (2008).  

R5. John R. Hackworth & Frederick D. Hackworth Jr, Programmable Logic Controllers – Programming Methods and Applications, Pearson (2011).

Evaluation Pattern

DETAIL OF MARK FOR COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM335 - MANUFACTURING TECHNOLOGY (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 
  • To transform product ideas into viable products
  • To develop hand sketching; fundamental engineering design principles and procedures.
  • To design, analyse and optimize parts using CAD, CAM, CAE technologies.
  • To implement concepts of additive manufacturing, digital twin technology, IOT, smart factory.
  • To develop concepts in automation and Industry 4.0.

Learning Outcome

CO-1: Identify different axes, machine zero, home position, systems and controls CNC machines.(L2)

CO-2: Implement the ideas developed in additive manufacturing processes.(L2)

CO-3: Interpret the digital twin technology and Industry 4.0 concepts in real-time.(L2)

CO-4: Relate fundamental knowledge developed in automation and smart factory in industries.(L3)

CO-5: Explain digitizing methods and main technologies in IOT.(L2)

Unit-1
Teaching Hours:9
Manufacturing Processes
 

Introduction to primary manufacturing processes (rolling, drawing, extrusion, forging and metal forming processes). Basic concepts in secondary manufacturing processes (surface finishing, coating, welding and painting).  

Unit-1
Teaching Hours:9
CNC Machines
 

Introduction to Computer Numerical Control: CNC Systems – An Overview of Fundamental aspects of machine control, Different types of CNC machines – Advantages and disadvantages of CNC machines. NC part programming, G and M codes, Creating profiles using NC programming, CAM, NC, CNC and DNC, selection criteria for CNC machines, adaptive control.

Unit-2
Teaching Hours:9
Robot Manufacturing
 

Pick and place, palletizing and depalletizing, machining loading and unloading, welding & assembly, Medical, agricultural and space applications, unmanned vehicles: ground, Ariel and underwater applications, robotic for computer integrated manufacturing. Types of robots: Manipulator, Legged robot, wheeled robot, aerial robots, Industrial robots, Humanoids, Robots, Autonomous robots, and Swarm robots.

Unit-2
Teaching Hours:9
Automation
 

Automation in production system, principles and strategies for automation, basic element of an automated system, advanced automation functions, Levels of Automation, Automation Flow Lines, Methods of Work Part transport, Transfer Mechanism, Automated storage and material handling systems, Automated assembly system.

Unit-3
Teaching Hours:9
Advanced Materials
 

Polyjet, LENS, Metal and Ceramic printing, Electronic Materials, Bioprinting, Food Printing.

Unit-3
Teaching Hours:9
Additive Manufacturing Processes
 

Fused Deposition Modeling, Stereolithography systems, Selective Laser Sintering, Solid Ground Curing, Powder Bed Fusion, Beam Deposition, Sheet Lamination: Principles, Materials, Process, Benefits and Drawbacks, Applications.

Unit-4
Teaching Hours:9
Industry 4.0
 

Concept, Globalization and emerging issues, the Fourth Revolution, Lean Manufacturing, smart and connected business perspectives, Cloud applications in manufacturing.

Unit-4
Teaching Hours:9
Digital Twin Technology
 

Basic Concepts of Digital Twin, Features and Implementation, Digital Twin: Digital Thread and Digital Shadow, Building Blocks, Types and Characteristics of a good digital twin platform, Benefits and Impact and Challenges, Future of Digital Twins.

Unit-5
Teaching Hours:9
IOT in Manufacturing
 

Overview, History, Definition and Characteristics, Connectivity Terminologies, Building blocks, Types of technologies used in IoT System, Baseline Technologies (Machine-to-Machine (M2M) communications, Cyber-Physical-Systems (CPS)), IoT Vs M2M, IoT enabled Technologies, IoT Levels and Templates, Design Methodology, The Physical Design Vs Logical Design of IoT, Functional blocks of IoT and Communication Models/Technologies, Development Tools used in IoT.

Unit-5
Teaching Hours:9
Smart Factory
 

Levels of Smart Factories, Benefits, Technologies used in smart factory, smart factory in IOT, Key principles of a smart factory, Creating a smart factory, smart factories and cybersecurity.

Text Books And Reference Books:

T1. R.Rajasekar, C.Moganapriya, M.Harikrishna Kumar, P. Sathish Kumar, Integration of Mechanical and Manufacturing Engineering with IoT: A Digital Transformation, John Wiley and Sons, 2023. ISBN: 978-1-119-86537-7

T2. Vytautas Ostaševičius, Digital Twins in Manufacturing: Virtual and Physical Twins for Advanced Manufacturing, Springer, 2022.

T3. Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty , Srikanta Pal, Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing, Springer, 2021. ISBN: 978-3030818142.

T4. C. P. Paul, A. N. Jinoop, Additive Manufacturing: Principles, Technologies and Applications, McGraw Hill, 2021. ISBN: 9789390727483.

T5. P.N.Rao, N.K.Tiwari, T. Kundra, Computer Aided Manufacturing, Tata McGraw Hill, New Delhi,2014.

T6. R.K.Rajput, A textbook of Manufacturing Technology (Manufacturing Processes), Laxmi Publications, 2019. ISBN-13: 978-8131802441

Essential Reading / Recommended Reading

R1. M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson education, Fourth Edition, 2016.

R2. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2016.

R3. P.C.Sharma, A Textbook of Manufacturing Technology I and II, S.Chand Publishing, 2019.

R4.  G. Chaudhary, M. Khari, M. Elhoseny, Digital Twin Technology, CNC Press, 2022. ISBN: 9780367677954.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

CSE451 - EXTENDED REALITIES (2023 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description:

The course covers contents from basics of XR(AR-VR-MR), Unity Basic concepts, Introductory concepts of C# programming, functions of Augmented Reality.

 

Course objectives:

Students should be able to:

● Understand the core concepts and applications of Extended Reality (XR).

● Navigate and utilize the Unity platform proficiently for XR development.

● Develop XR experiences using C# scripting for interactive elements.

● Create Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments.

● Design and implement immersive user interfaces tailored for XR applications.

Learning Outcome

CO1: Explain core concepts and applications of Extended Reality (XR) through analysis and evaluation across various domains.

CO2: Develop using Unity platform proficiently for XR development, demonstrating synthesis and creation of immersive environments

CO3: Develop XR experiences using C# scripting, integrating critical thinking and problem-solving skills.

CO4: Build Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments, applying creative thinking and knowledge synthesis.

CO5: Develop immersive user interfaces tailored for XR applications, ensuring optimal user experience and engagement.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Text Books And Reference Books:

Steven M Lavelle: Virtual reality, Cambridge University Press, 2023

Evaluation Pattern

CIA: 50 marks

ESE: 50 marks

(Scale down to 50 marks - Department level)

CY421 - CYBER SECURITY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:0
Credits:0

Course Objectives/Course Description

 

This mandatory course is aimed at providing a comprehensive overview of the different facets of Cyber Security.  In addition, the course will detail into specifics of Cyber Security with Cyber Laws both in Global and Indian Legal environments

Learning Outcome

CO1: Describe the basic security fundamentals and cyber laws and legalities.

CO2: Describe various cyber security vulnerabilities and threats such as virus, worms, online attacks, Dos and others.

CO3: Explain the regulations and acts to prevent cyber-attacks such as Risk assessment and security policy management.

CO4: Explain various vulnerability assessment and penetration testing tools.

CO5: Explain various protection methods to safeguard from cyber-attacks using technologies like cryptography and Intrusion prevention systems.

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Text Books And Reference Books:

R1. Matt Bishop, “Introduction to Computer Security”, Pearson, 6th impression, ISBN: 978-81-7758-425-7.

R2. Thomas R, Justin Peltier, John, “Information Security Fundamentals”, Auerbach Publications.

R3. AtulKahate, “Cryptography and Network Security”,  2nd Edition, Tata McGrawHill.2003

R4. Nina Godbole, SunitBelapure, “Cyber Security”, Wiley India 1st Edition 2011

R5. Jennifer L. Bayuk and Jason Healey and Paul Rohmeyer and Marcus Sachs, “Cyber Security Policy Guidebook”, Wiley; 1 edition , 2012

R6. Dan Shoemaker and Wm. Arthur Conklin, “Cyber security: The Essential Body Of Knowledge”,   Delmar Cengage Learning; 1 edition, 2011

R7. Stallings, “Cryptography & Network Security - Principles & Practice”, Prentice Hall, 6th Edition 2014

Essential Reading / Recommended Reading

--

Evaluation Pattern

Only CIA will be conducted as per the University norms. No ESE

Maximum Marks : 50

HS445E1 - PROFESSIONAL ETHICS (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This paper deals with the various organizational behaviors like learning, perception, motivation and method of managing stress and conflicts and the basic principles of communication.

Learning Outcome

CO1: Understand the importance of Values and Ethics in their personal lives and professional careers

CO2: Learn the rights and responsibilities as an employee, team member and a global citizen

CO3: Estimate the impact of self and organization's actions on the stakeholders and society

CO4: Develop an ethical behaviour under all situations

CO5: Appreciate the significance of Intellectual Property as a very important driver of growth and development in today's world and be able to statutorily acquire and use different types of intellectual property in their professional life

Unit-1
Teaching Hours:6
Introduction to Professional Ethics
 

Definition, Nature, Scope- Moral Dilemmas- moral Autonomy-Kohlberg’s theory- Gilligan’s theory, Profession Persuasive, Definitions, Multiple motives, Models of professional goals. Moral Reasoning and Ethical theories – Professional Ideals and Virtues- Theories of Right Action, Self- interest, Customs and Regions- Use of ethical Theories

Unit-2
Teaching Hours:6
Engineering as Social Experimentation and Responsibility
 

For Safety Engineering as experimentation- Engineers as responsible experimenters, the challenger case, Codes of Ethics, A balanced outlook on law. Concept of safety and risk, assessment of safety and risk- risk benefit analysis and reducing the risk- three- mile island, Chernobyl and safe exists

Unit-3
Teaching Hours:6
Global Issues and Introduction To Intellectual Property
 

Multinational corporations- Environmental ethics- Computer ethics and Weapons developments. Meaning and Types of Intellectual Property, Intellectual Property. Law Basics, Agencies responsible for intellectual property registration, International Organizations, Agencies and Treaties, Importance of Intellectual Property Rights.

Unit-4
Teaching Hours:6
Foundations of Trademarks
 

Meaning of Trademarks, Purpose and Functions of Trademarks, types of Marks, Acquisition of Trademark rights, Common Law rights, Categories of Marks, Trade names and Business Name, Protectable Matter, Exclusions from Trademark Protection. Work process.

Unit-5
Teaching Hours:6
Foundations of Copyrights Laws and Patent Laws
 

Meaning of Copyrights, Common Law rights and Rights under the 1976 copyright Act, Recent developments of the Copyright Act, The United States Copyright Office. Meaning of Patent Law, Rights under Federal Law, United States patent and Trademark Office, Patentability, Design Patents, Plants patents, Double Patenting.

Text Books And Reference Books:

R1.  Nagarajan “A Text Book on Professional ethics and Human values”, New Age International, 2009.

R2.  Charles &Fleddermann “Engineering Ethics”, Pearson, 2009.

R3.  Rachana Singh Puri and Arvind Viswanathan, I.K.”Practical Approach to Intellectual Property rights”, International Publishing House, New Delhi. 2010.

R4.  A.B.Rao “Business Ethics and Professional Values”, Excel, 2009.

Essential Reading / Recommended Reading

T1. Jayashree Suresh &B.S.Raghavan “Human values and Professional Ethics”, S. Chand, 2009.

T2.  Govindarajan, Natarajan and Senthilkumar “Engineering Ethics”, PHI:009.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

5

-

5

2

CIA-2

50

10

-

10

3

CIA-3

20

5

-

5

4

Attendance

05

05

-

05

5

ESE

50

25

20

25

 

 

TOTAL

50

-

50

MAHO431DMP - COMPUTER AIDED ENGINEERING (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course objectives: 

•To introduce the Industry experience to student in product design and developments.

•To know the stages involved in any product design and development.

•To develop the student’s skills to solve the problems facing while geometry modelling and FE modelling.

•To guide the students in selection of geometry for its validation for required application.

•To enhance the problem analysis knowledge in modelling and analysis.

•To improve the knowledge in identify the problem and selection of analysis method and hence to validate the output of CAE tools.

 

Learning Outcome

CO1: Understand the possibilities of CAD modelling and analysis.

CO2: Apply geometrical modelling to create solid models and its boundary conditions

CO3: Apply the knowledge of static and dynamic analysis on solid models.

CO4: Apply the knowledge of loading and boundary conditions on part models.

CO5: Validate the results of FEA and apply error correction on solid models created.

Unit-1
Teaching Hours:9
INTRODUCTION:
 

CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results.                

Unit-1
Teaching Hours:9
INTRODUCTION:
 

CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results.                

Unit-1
Teaching Hours:9
INTRODUCTION:
 

CAD and Analysis tools. Geometry modelling, Finite Element Modelling, Selection of geometry, Selection of element types, Loads and Boundary conditions, Validation of results.                

Unit-2
Teaching Hours:9
Geometry Modelling
 

Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. 

Unit-2
Teaching Hours:9
Geometry Modelling
 

Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. 

Unit-2
Teaching Hours:9
Geometry Modelling
 

Modelling a point, line, surface and solids. Boolean operations, assembly of parts. Import and export of geometry. Introduction to GD&T. 

Unit-3
Teaching Hours:9
Finite Element Modelling:
 

Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review.

Unit-3
Teaching Hours:9
Finite Element Modelling:
 

Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review.

Unit-3
Teaching Hours:9
Finite Element Modelling:
 

Selection/disfeaturing of geometry for FE modelling, dividing surfaces and cutting of solids. Setting preferences. Element qualities and their standard values required for required analysis/results. Import and export of FEM files for analysis and results review.

Unit-4
Teaching Hours:9
Loads and boundary conditions:
 

Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads.

Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., 

Unit-4
Teaching Hours:9
Loads and boundary conditions:
 

Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads.

Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., 

Unit-4
Teaching Hours:9
Loads and boundary conditions:
 

Selection of nodes, surfaces. Local coordinate systems, assigning the coordinate system to nodes. Selection or estimation of loads in terms of point, surface and body loads. How to apply inertia loads.

Solution control and output requests: Defining required output parameters/results other than standard output results. Defining the solution parameters like, end time, timesteps, load steps, etc., 

Unit-5
Teaching Hours:9
Error rectification Verification/Validation of output results
 

Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.                 

 

Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results.

Unit-5
Teaching Hours:9
Error rectification Verification/Validation of output results
 

Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.                 

 

Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results.

Unit-5
Teaching Hours:9
Error rectification Verification/Validation of output results
 

Error rectification: Study on common type of errors while solving FE problems. Understanding the error types. How to address these errors.                 

 

Verification/Validation of output results: How to validate results from FEA. Steps involved in verification of results. Identifying reason for deviation in results as compared to calculated results through classical methods or lab test results. Modifying/simplifying the input data based on output results.

Text Books And Reference Books:

1. K L Narayana, P Kannaiah & K Venkata Reddy, “Machine Drawing” 5th edition, new

age International Publishers 2016.

2.  N.D.Bhat & V.M.Panchal, “A Primer on Computer Aided Machine Drawing-2007”,

VTU, Belgaum, ‘Machine Drawing', 2012.

 

Essential Reading / Recommended Reading

Reference Books:

R1. S. Trymbaka Murthy,”A Text Book of Computer Aided Machine Drawing”, CBS

Publishers, New Delhi, 2007

R2. K.R. Gopala Krishna, “Machine Drawing”, Subhash Publication, 2012.

R3. Goutam Pohit & Goutham Ghosh, “Machine Drawing with Auto CAD”,1st Indian print

Pearson Education, 2007

R4. Sham Tickoo, “Auto CAD 2015 for engineers and designers”, Dream tech 2015

R5. N. Siddeshwar, P. Kanniah, V.V.S. Sastri, “Machine Drawing”, published by Tata Mc

GrawHill,2006

R6. Alex Krulikowski, “Fundamentals of Geometric Dimension & Tolerancing”, 6th edition, Goodheart-Willcox Pub ,25 November 2014

 

Evaluation Pattern

SL no

Component

Assessment for

Scaled- down to

1

CIA-1

20 M

10 M

2

CIA-2

50 M

25 M

3

CIA-3

20 M

10 M

4

Attendance

05 M

05 M

5

ESE

100 M

50M

 

 

Total

100 M

MICSAI432 - DATA STRUCTURES AND ALGORITHMS (2023 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course Description:

This course provides knowledge on Stacks, Queues, Linked Lists, Trees and Heap. The knowledge of C language and data structures will be reinforced by practical exercises during the course of study. The course will help students to develop the capability to select and design data structures for algorithms that are appropriate for problems that they might encounter.

Course Objective:

To understand the basic concept of data structures for storage and retrieval of ordered or unordered data. Data structures include: arrays, linked lists, binary trees, heaps, and hash tables.  

 

 

Learning Outcome

CO1: Explain the basic concepts of data structures and solve the time complexity of the algorithm

CO2: Experiment with various operations on Linear Data structures

CO3: Examine the Structures and Operations of Trees and Heaps Data Structures

CO4: Compare various given sorting techniques with respect to time complexity

CO5: Choose various shortest path algorithms to determine the minimum spanning path for the given graphs

Unit-1
Teaching Hours:11
Introduction
 

Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis

Practical Experiments / Experiential Learning:

Ex 1: Implement the applications Stack ADT

Ex 2: Implement the applications for Queue ADT

Unit-1
Teaching Hours:11
Introduction
 

Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis

Practical Experiments / Experiential Learning:

Ex 1: Implement the applications Stack ADT

Ex 2: Implement the applications for Queue ADT

Unit-1
Teaching Hours:11
Introduction
 

Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis

Practical Experiments / Experiential Learning:

Ex 1: Implement the applications Stack ADT

Ex 2: Implement the applications for Queue ADT

Unit-1
Teaching Hours:11
Introduction
 

Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis

Practical Experiments / Experiential Learning:

Ex 1: Implement the applications Stack ADT

Ex 2: Implement the applications for Queue ADT

Unit-1
Teaching Hours:11
Introduction
 

Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis

Practical Experiments / Experiential Learning:

Ex 1: Implement the applications Stack ADT

Ex 2: Implement the applications for Queue ADT

Unit-2
Teaching Hours:14
Lists, Stacks and Queues
 

Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic

Expression from Infix to postfix. Applications of stacks.

The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues

Practical Experiments / Experiential Learning:

Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix]

Ex 2: Search Tree ADT - Binary Search Tree

Unit-2
Teaching Hours:14
Lists, Stacks and Queues
 

Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic

Expression from Infix to postfix. Applications of stacks.

The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues

Practical Experiments / Experiential Learning:

Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix]

Ex 2: Search Tree ADT - Binary Search Tree

Unit-2
Teaching Hours:14
Lists, Stacks and Queues
 

Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic

Expression from Infix to postfix. Applications of stacks.

The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues

Practical Experiments / Experiential Learning:

Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix]

Ex 2: Search Tree ADT - Binary Search Tree

Unit-2
Teaching Hours:14
Lists, Stacks and Queues
 

Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic

Expression from Infix to postfix. Applications of stacks.

The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues

Practical Experiments / Experiential Learning:

Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix]

Ex 2: Search Tree ADT - Binary Search Tree

Unit-2
Teaching Hours:14
Lists, Stacks and Queues
 

Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition, Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic

Expression from Infix to postfix. Applications of stacks.

The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues

Practical Experiments / Experiential Learning:

Ex 1: Operations on stack[e.g.: infix to postfix, evaluation of postfix]

Ex 2: Search Tree ADT - Binary Search Tree

Unit-3
Teaching Hours:13
Trees
 

Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap

Practical Experiments / Experiential Learning: 

Ex 1: Heap Sort

Ex 2: Quick Sort

Unit-3
Teaching Hours:13
Trees
 

Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap

Practical Experiments / Experiential Learning: 

Ex 1: Heap Sort

Ex 2: Quick Sort

Unit-3
Teaching Hours:13
Trees
 

Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap

Practical Experiments / Experiential Learning: 

Ex 1: Heap Sort

Ex 2: Quick Sort

Unit-3
Teaching Hours:13
Trees
 

Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap

Practical Experiments / Experiential Learning: 

Ex 1: Heap Sort

Ex 2: Quick Sort

Unit-3
Teaching Hours:13
Trees
 

Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap

Practical Experiments / Experiential Learning: 

Ex 1: Heap Sort

Ex 2: Quick Sort

Unit-4
Teaching Hours:11
Sorting
 

Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting

Practical Experiments / Experiential Learning:

Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures

Ex 2: To determine the time complexity of a given logic.

Unit-4
Teaching Hours:11
Sorting
 

Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting

Practical Experiments / Experiential Learning:

Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures

Ex 2: To determine the time complexity of a given logic.

Unit-4
Teaching Hours:11
Sorting
 

Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting

Practical Experiments / Experiential Learning:

Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures

Ex 2: To determine the time complexity of a given logic.

Unit-4
Teaching Hours:11
Sorting
 

Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting

Practical Experiments / Experiential Learning:

Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures

Ex 2: To determine the time complexity of a given logic.

Unit-4
Teaching Hours:11
Sorting
 

Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting

Practical Experiments / Experiential Learning:

Ex 1: Applications of Probability and Queuing Theory Problems to be implemented using data structures

Ex 2: To determine the time complexity of a given logic.

Unit-5
Teaching Hours:11
Graphs
 

Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study

Practical Experiments / Experiential Learning:

 Ex 1: Implementing a Hash function/Hashing Mechanism.

Ex 2: Implementing any of the shortest path algorithms

Unit-5
Teaching Hours:11
Graphs
 

Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study

Practical Experiments / Experiential Learning:

 Ex 1: Implementing a Hash function/Hashing Mechanism.

Ex 2: Implementing any of the shortest path algorithms

Unit-5
Teaching Hours:11
Graphs
 

Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study

Practical Experiments / Experiential Learning:

 Ex 1: Implementing a Hash function/Hashing Mechanism.

Ex 2: Implementing any of the shortest path algorithms

Unit-5
Teaching Hours:11
Graphs
 

Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study

Practical Experiments / Experiential Learning:

 Ex 1: Implementing a Hash function/Hashing Mechanism.

Ex 2: Implementing any of the shortest path algorithms

Unit-5
Teaching Hours:11
Graphs
 

Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra’s Algorithm – Minimum Spanning Tree – Prim’s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study

Practical Experiments / Experiential Learning:

 Ex 1: Implementing a Hash function/Hashing Mechanism.

Ex 2: Implementing any of the shortest path algorithms

Text Books And Reference Books:

Text Book: T1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in Java”, 3rd Edition, Pearson Education 2013.

Essential Reading / Recommended Reading

References (Text / Online Ref):

R1. Fundamentals of data structure in C by Ellis Horowitz, Sarataj Shani 3rd edition, Galgotia book source PVT,2010.

R2.Classic Data Structures , Debasis Samanta ,2nd Edition, PHI Learning PVT,2011

Evaluation Pattern

CIA 1 : 20 Marks

CIA 2 : 50 Marks

CIA 3 : 20 Marks

ESE :  100 Marks

CIA scaled down to 70 marks and ESE to 30 marks

MIMBA432 - ORGANISATIONAL BEHAVIOUR (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course Description: The course is offered as a mandatory core course for all students in Trimester II.  The course introduces students to a comprehensive set of concepts and theories, facts about human behaviour and organizations that have been acquired over the years. The subject focuses on ways and means to improve productivity, minimize absenteeism, increase employee engagement and so on thus, contributing to the overall effectiveness. The basic discipline of the course is behavioral science, sociology, social psychology, anthropology and political science

 

Course Objectives: To make sense of human behaviour, use of common sense and intuition is largely inadequate because human behaviour is seldom random. Every human action has an underlying purpose which was aimed at personal or societal interest. Moreover, the uniqueness of each individual provides enough challenges for the managers to predict their best behaviour at any point of time. A systematic study of human behaviour looks at the consistencies, patterns and cause effect relationships which will facilitate understanding it in a reasonable extent. Systematic study replaces the possible biases of intuition that can sabotage the employee morale in organizations

Learning Outcome

CO1: Determine the individual and group behavior in the workplace

CO2: Assess the concepts of personality, perception and learning in Organizations

C03: Analyze various job-related attitudes

CO4: Design motivational techniques for job design, employee involvement, incentives, rewards & recognitions

CO5: Manage effective groups and teams in organizations

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-1
Teaching Hours:9
Introduction to Organizational Behaviour
 

Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour.

 

Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age.

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-2
Teaching Hours:9
Individual Behaviour ? Personality, Perception and Learning
 

Personality:  Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. 

Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. 

Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-3
Teaching Hours:9
Attitudes, Values & Job Satisfaction
 

Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes 

Values: meaning, importance, source and types, and applications in organizations. 

Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-4
Teaching Hours:9
Motivation
 

Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Unit-5
Teaching Hours:9
Groups & Teams
 

Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making.

Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making

Text Books And Reference Books:

T1. Robbins, S P., Judge, T A and Vohra, N (2016).  Organizational Behavior. 16th Edition, Prentice Hall of India

Essential Reading / Recommended Reading

T1. Robbins, S P., Judge, T A and Vohra, N (2016).  Organizational Behavior. 16th Edition, Prentice Hall of India

Evaluation Pattern

CIA1 - 20

MSE - 50

CIA 3- 20

ESE - 100

OEC471 - NCC4 (2023 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:50
Credits:1

Course Objectives/Course Description

 

This course offers an integrated approach to disaster management, physical training, and aviation operations, designed to prepare students for effective response and leadership in emergency situations. It includes comprehensive training in physical fitness, fundamental drill techniques, aviation medicine, and standard operating procedures for ground handling. Students will also engage in practical exercises such as obstacle courses and social service activities to develop their skills in operational readiness, safety checks, and community engagement. This course equips students with the necessary skills to manage disasters effectively, maintain high safety standards, and contribute positively to their communities.

Master standard ground handling procedures and conduct thorough internal and external safety checks to ensure operational readiness and safety in aviation environments.

Apply principles of disaster management to effectively plan for and respond to emergency situations, ensuring efficient and coordinated disaster response.

Integrate theoretical knowledge with practical skills to address various challenges in disaster management and aviation safety, ensuring a comprehensive approach to both personal and professional development.

Learning Outcome

CO1: Demonstrate improved physical fitness, including cardiovascular endurance, strength, and flexibility, while mastering fundamental foot and rifle drills.

CO2: Exhibit leadership skills and effectively apply disaster management principles in practical scenarios

CO3: Demonstrate comprehensive knowledge and application of aviation safety protocols, including health and safety in aviation, medical emergencies and first aid, standard ground handling procedures

Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Evaluation Pattern

Attendance

(5)

Camp Attended(5)

Performance
Contribution
(10)

Personal and
Unit
Development (10)

Written Exam Marks  (20)

Total(50)

 

 

 

 

 

Evaluation Criteria

Excellent

Good

Average

Needs Improvement

Poor

9-10

7-8

6-7

5

0

Attendance

Has Participated in >= 95% of the NCC activities

Has Participated in >= 90%  and <95% of the NCC activities

Has Participated in >= 85%  and <90% of the NCC activities

Has Participated in >= 80%  and <85% of the NCC activities

Has attendance percentage less than 80%

Camp Attended(20)

10

9

6-8

5

0

National camp(RD)

National cam p AIVSC

Other National camps

Unit level Camps

No camps

Performance Contribution

8 – 10

6 – 7

4 – 5

1 – 3

0

Was a self-starter; consistently sought new challenges and asked for additional work assignments; regularly approached and solved problems independently; frequently proposed innovative and creative ideas, solutions, and/or options

Worked without extensive supervision; in some cases, found problems to solve and sometimes asked for additional work assignments; normally set his/her own goals and, in a few cases, tried to exceed requirements; offered some creative ideas

Had little observable drive and required close supervision; showed little if any interest in meeting standards; did not seek out additional work and frequently procrastinated in completing assignments; suggested no new ideas or options

Wasn’t regular.

No new ideas projected or discussed.

Didn’t complete the given tasks in the mentioned time limit.

Hasn’t visited the company.

 

8 – 10

6 – 7

4 – 5

1 – 3

0

Personal and
Professional
Development

Will develop a practical “working knowledge” and understanding of NCC expectations.

 

 

Will develop a practical “working knowledge” and understanding of workplace expectations.

 

 

Will develop a general understanding of workplace expectations.

 

 

Activities participated did not provide/or allow for understanding of workplace expectations.

 

 

Hasn’t Contributed to NCC

OEC472 - ABILITY ENHANCEMENT COURSE - IV (2023 Batch)

Total Teaching Hours for Semester:42
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

Course Description:

This course enhances essential skills across five units: presentation and writing skills, assertiveness and teamwork, interview techniques, quantitative aptitude, and C++ programming. It covers planning and delivering presentations, advanced writing practices, assertive communication, effective teamwork, and mastering job interviews. The course also includes mathematical concepts like averages, data sufficiency, permutations, combinations, and probability. Additionally, it provides comprehensive training in C++ programming, focusing on object-oriented principles, dynamic memory management, and advanced features.

Course Objective:

1. Develop effective presentation skills, including planning, structuring, and engaging the audience.

2. Enhance writing proficiency with a focus on paragraph organization, proper punctuation, and error correction.

3. Cultivate assertive communication and teamwork strategies for collaborative success.

4. Master interview techniques, including preparation, execution, and follow-up.

5. Understand and apply mathematical concepts in averages, mixtures, data sufficiency, permutations, combinations, and probability.

Learning Outcome

CO1: Deliver structured and visually supported presentations with confidence.

CO2: Write coherent, concise, and error-free documents.

CO3: Communicate assertively and work effectively within teams.

CO4: Successfully navigate various types of interviews and handle challenging questions.

CO5: Solve complex mathematical problems involving averages, mixtures, permutations, combinations, and probability.

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Text Books And Reference Books:

1.Title: The Elements of Style

 

Author: William Strunk Jr. and E.B. White

 

Publisher: Pearson

 

Edition: 4th Edition

ISBN: 9780205309023.

2.Title: Cracking the Coding Interview

 

Author: Gayle Laakmann McDowell

 

Publisher: CareerCup

 

Edition: 6th Edition

ISBN: 9780984782857

 

Essential Reading / Recommended Reading

1.Title: The Assertiveness Workbook: How to Express Your Ideas and Stand Up for Yourself at Work and in Relationships

Author: Randy J. Paterson

Publisher: New Harbinger Publications

Edition: 1st Edition

ISBN: 9781572242098.

2.Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

3. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

 

    Edition: 10th Edition (2022).

4.Title: Let Us C++

 

   Author: YashavantKanetkar

 

   Publisher: BPB Publications

 

   Edition: 2nd Edition

 

   ISBN: 9789387284904

 

 

 

   Solutions Book:

 

 4.  Title: Let Us C++ Solutions

 

   Author: YashavantKanetkar

 

   Publisher: BPB Publications

 

   Edition: 1st Edition

   ISBN: 9789387284911

 

Evaluation Pattern

Total Credits=1

Overall CIA=50 Marks.

RM431P - EMBEDDED SYSTEMS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

At the end of the course, the students would be able to  

1.       To provide the overview of embedded system design principles

2.       To understand the concepts of real time operating systems

3.    To provide exposure to embedded system development tools with hands-on experience in using basic programming techniques.

Learning Outcome

CO1: Explain the architecture, Instruction set and addressing modes of PIC and Motorola(68HC12) microcontroller (L2)

CO2: Summaries the concepts of embedded C programming (L3)

CO3: Explain the need of embedded systems and their development procedures. (L2)

CO4: Summaries the uses of embeded system in Automotive electronics.(L2)

CO5: Summaries the concepts involved in Real time operating systems. L2)

Unit-1
Teaching Hours:9
MICROCONTROLLERS
 

8051 microcontroller, PIC microcontroller- Architecture - Instruction set - Addressing modes - Timers - Interrupt logic - Introduction to  Motorola 68HC12 microcontroller.

Unit-2
Teaching Hours:9
EMBEDDED C PROGRAMMING
 

Interfacing of peripherals Using Microcontrollers, Introduction to embedded c programming, Embedded System design examples, Introduction of ARM subsystem design, Case study

Unit-3
Teaching Hours:9
EMBEDDED SYSTEM
 

Overview of embedded systems- embedded system design process- challenges - -Hardware and Software co design- Embedded Buses( CAN BUS - I2C - GSM - GPRS - Zig bee)- Case study

Unit-4
Teaching Hours:9
FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS & SAFETY
 

Applications of Embedded Systems & Signal Data Processing in Automotive Electronics; Engine Management System; Dashboard Instruments; Driver Assistive Systems, Role of  Internet of Things (IOT), Case Study( Control of Airbags, Seat Belts etc.)

Unit-5
Teaching Hours:9
REAL TIME OPERATING SYSTEM
 

Real time operating systems Architecture - Tasks and Data - Semaphore and shared data - Message queues, mail boxes and pipes - Encapsulating semaphores and queues - interrupt routines in an RTOS Environment. Introduction to Vx works, RT Linux. Case study

Text Books And Reference Books:

T1. Frank Vahid, Tony John Givargis, Embedded System Design: A Unified Hardware/ Software Introduction - Wiley & Sons, Inc. 2002 .

T2. Rajkamal, ‘Embedded System – Architecture, Programming, Design’, Tata Mc Graw Hill, 2011

T3. John B. Peatman, “Design with PIC Microcontrollers” Prentice Hall, 2003.

T4: Danny Causey, Muhammad Ali Mazidi, and Rolin D. McKinlay”PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18”

T5: H. P. Garg, Maintenance Engineering, S. Chand and Company.

Essential Reading / Recommended Reading

R1. Steve Heath, ‘Embedded System Design’, II edition, Elsevier, 2003.

R2. David E. Simon, “An embedded software primer”, Addison – Wesley, Indian Edition Reprint

(2009).

R3. Robert Foludi “Building Wireless Sensor Networks”, O’Reilly, 2011.

R4. Marwedel, Peter, “EMBEDDED SYSTEM DESIGN”, London Springer International 2003, ISBN:9788181284334

R5: Higgins & Morrow, Maintenance Engineering Handbook, Da Information Services.

Evaluation Pattern

COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM432P - SOLID AND FLUID MECHANICS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

At the end of the course the students should be able to appreciate the basic principles and understand the function of various type of pumps and machineries and flow of liquid through pipes. Basics of Engineering elements like springs and beams must have bean made clear so that they will be able to design them.

Learning Outcome

CO-1: Describe the fundamental concepts of equilibrium, stress, strain and deformation of solids. (L2)

CO-2: Discusses the bending of beams and torsion. (L2)

CO-3: Defines the fluid concepts, properties, statics and kinematics. (L2)

CO-4: Explain and calculate the fluid dynamics and in-compressible fluid flow. (L2)

CO-5: Defines and discusses the hydraulic turbines and pumps. (L2)

Unit-1
Teaching Hours:9
Equilibrium, Stress, Strain And Deformation Of Solids
 

Deformation in Solids, stress, strain, Hooke’s law, Elastic constants, Stress Strain curve for ductile and brittle materials, Principle of super position, Shear stresses

Compound Stresses and Strains - Two-dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress.

Unit-2
Teaching Hours:9
Bending Of Beams And Torsion
 

Beams – Types and transverse loading on beams – shear force and bending moment in beams – Cantilevers – Simply supported beams and over-hanging beams. Theory of simple bending – Analysis of stresses – load carrying capacity. Bending and shear stress for I and T section.

Unit-3
Teaching Hours:9
Fluid Concepts, Properties, Statics And Kinematics
 

Fluid – definition, real and ideal fluids - Distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, viscosity, capillary and surface tension, compressibility and vapour pressure – Temperature influence on fluid properties - Fluid statics – hydrostatic pressure concept and distribution on plane surfaces – Absolute and gauge pressures – pressure measurements by manometers and pressure gauges

Unit-4
Teaching Hours:9
Fluid Kinematics and Dynamics
 

Fluid Kinematics - Flow visualization - types of flow – lines of flow - velocity field and acceleration.

Fluid dynamics – Euler’s equation of motion – Euler’s equation of motion along a streamline – Bernoulli equation and its application – Venturi, orifice and flow nozzle meters – pitot tube – notches and weirs 

Unit-5
Teaching Hours:9
Hydraulic Turbines And Pumps
 

Introduction to types of hydraulics turbine, Pelton wheel, Francis Hydro turbines - definition, types and classifications – Pelton, Francis and Kaplan turbines. 

Introduction to pumps and blowers reciprocating type, centrifugal and axial  type. Postive displacement pumps and blower                                    

Text Books And Reference Books:

T1. Junarkar S.B, ‘Mechanics of Structures’, Vol. 1, 21ST edition, Charotar Publishing House, Anand, India, 1995.

T2. Kazimi S.M.A., ‘Solid Mechanics’, Tata McGraw Hill Publishing Company, New Delhi, 1981.

T3. Kumar, K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd, New Delhi (7th edition), 1995.

T4. Bansal, R.K.,"Fluid Mechanics and Hydraulics Machines", (5th edition), Laxmi publications (P) Ltd, New Delhi, 1995

Essential Reading / Recommended Reading

R1. William A.Nash, Theory and problems of strength of materials, Schaum’s Outline Series, McGraw-Hill International Editions, Third Edition, 1994

R2. Streeter, V.L., and Wylie, E.B.,"Fluid Mechanics", McGraw-Hill, 1983.

R3. White, F.M.,"Fluid Mechanics", Tata McGraw-Hill, 5th Edition, New Delhi, 2003.

R4. Som, S.K., and Biswas, G.,"Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, 2nd Edition, 2004.

R5. Bhavikatti, S S, Kothandaraman, C P, “SOLID AND FLUID MECHANICS”, New Delhi New Age Internations (P) Ltd 2009.

R6. Bullett, Shaun, “FLUID AND SOLID MECHANICS: LTCC ADVANCE MATHEMATICS SERIES - VOLUME 2”, London; World Scientific, 2016.

R7. Hariri Asli, Kaveh, “HANDBOOK OF RESEARCH FOR FLUID AND SOLID MECHANICS: THEORY, SIMULATION, AND EXPERIMENT”, New York: CRC Press, 2018.

R8. Barenblatt, G. I. Barenblatt G.I, “FLOW, DEFORMATION AND FRACTURE: LECTURES ON FLUID MECHANICS AND THE MECHANICS OF DEFORMABLE SOLIDS FOR MATHEMATICIANS AND PHYSICISTS”, New York: Cambridge University Press, 2014.

Evaluation Pattern

COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM433 - KINEMATICS AND THEORY OF MACHINES (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

1. To understand the kinematics and rigid-body dynamics of kinematically driven machine components.

2. To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link.

3. To be able to design some linkage mechanisms and cam systems to generate specified output motion.

4. To understand the kinematics of gear trains.

 

Learning Outcome

CO-1: Summarize the fundamentals of kinematics and Planar mechanisms.

CO-2: Analyse velocity and acceleration parameters in various four-bar mechanisms using the instantaneous centre method and relative velocity method.

CO-3: Develop the displacement diagram for a required output and design cam profiles for inline and offset followers.

CO-4: Explain the fundamentals of gear profiles and extrapolate various parameters of Spur gear teeth.

CO-5: Design gear trains for power transmission.

Unit-1
Teaching Hours:9
Classification of mechanisms
 

Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashoff’s law, Kinematic inversions of four bar chain and slider crank chains-Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms

Unit-2
Teaching Hours:9
Velocity and acceleration
 

Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Coriolis component of acceleration- introduction to linkage synthesis-three position graphical synthesis for motion and path generation

Unit-3
Teaching Hours:9
CAMS
 

Classification of cams and followers- Terminology and definitions- Displacement diagrams-Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers

Unit-4
Teaching Hours:9
Gears
 

Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics

Unit-5
Teaching Hours:9
Friction
 

Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication-friction clutches- belt and rope drives- friction in brakes 

Text Books And Reference Books:

T1. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988.

T2. Ratan.S.S, “Theory of Machines”, 4th Edition, Tata McGraw Hill Publishing company Ltd. 2014.

Essential Reading / Recommended Reading

R1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.

R2. CleghornW.L. , Mechanisms of Machines, Oxford University Press, 2005.

R3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.

 

Online Resources

W1. https://nptel.ac.in/courses/112104121/

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM434P - INDUSTRIAL ROBOTICS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 
  • To be familiar with brief history of robot and its components.
  • To give the student understanding of the robot cell design and machine interference.
  • To give knowledge about mathematical representation of manipulators and trajectory planning of robot movement.
  • To learn about Robot Programming methods and Languages of robot.
  • To know about the emerging applications of robot. 

Learning Outcome

CO-1: Identify the parts of a robot and explain the different control drive systems. (L2)

CO-2: Develop the transformation matrices and trajectory path of a robot. (L3)

CO-3: Explain the real time cycle and interference of a robot. (L2)

CO-4: Describe the kinematics and dynamic behaviour of robots and its programming. (L2)

CO-5: Appraise the emerging technologies in the field of robotics. (L2)

Unit-1
Teaching Hours:9
Basic Concepts
 

History - Robot definitions - Robot anatomy - Specifications of Robots – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot. Kinematics: Forward and inverse kinematics, Precision movement, robot specifications and Work volume, End Effectors: Grippers, tools, selection of grippers and tools.

Unit-1
Teaching Hours:9
Robot Control and Drives
 

Types of Robot drives. Drives: Pneumatic, Hydraulic, Electric actuators, Comparison. Basic robot motions, Point to point control, continuous path control. Robot control, unit control system concept, servo and non, servo control of robot joints, adaptive and optimal control.

Unit-2
Teaching Hours:9
Mathematical Representation
 

Types of Joints, Representation of Links using Denvit-Hartenberg Parameters, Link transformation matrices, Transformation matrices of 3R manipulator, PUMA560 manipulator, SCARA manipulator.

Unit-2
Teaching Hours:9
Trajectory Planning
 

Joint space schemes, cubic trajectory, Joint space schemes with via points, Cubic trajectory with a via point, Third order polynomial trajectory planning, Linear segments with parabolic blends, Cartesian space schemes, Cartesian straight line and circular motion planning., Rotational transformation, Jacobians. 

Unit-3
Teaching Hours:9
Robot Cell Design
 

Robot work cell design and control, Safety in Robotics, Robot cell layouts, safety considerations.

Unit-3
Teaching Hours:9
Robot Interference
 

Robots and machine interference, Robot cycle time analysis

Unit-4
Teaching Hours:9
Robot Programming
 

Robot language classification, programming methods, off and on line programming, Robot Operating System (ROS), Robotic Process Automation (RPA).

Unit-4
Teaching Hours:9
Simple Programs
 

Lead through method, Teach pendent method, Introduction to various types such as VAL, RAIL, AML, simple program.

Unit-5
Teaching Hours:9
Recent Developments in Robotics
 

Swarm bots, Underwater Robots, Mobile robot, Medical Robots, Soft Robots, Collaborative Robots, Cloud Robots, Micro robots, Tele Robots, AGVs, Underwater Robots, Robotics and AI, Economic and Social Aspects of Robots.

Unit-5
Teaching Hours:9
Industrial Applications
 

Application of robots, Material handling, Machine loading and unloading, Assembly, Inspection, Welding, Spray painting, Consumer Applications.

Text Books And Reference Books:

T1. Craig.J.J, “Introduction to Robotics mechanics and control”, Pearson Education, 2017.ISBN-13: 978-0133489798

T2. Koubaa A., “Robot Operating System: The Complete Reference”, Springer, 2021.ISBN-13: 978-3319260525.

T3. Ghosal A., “Robotics: Fundamental Concepts and Analysis”, Oxford,2016.ISBN-13: 978-0195673913

T4. Niku, S. B., “Introduction to Robotics Analysis, Systems”, Applications, 2nd edition, Pearson Education, 2010. ISBN-13: 978-0130613097.

T5. Gupta.A.K, Arora. S. K., Industrial Automation and Robotics, Mercury Learning and Information, 2017. ISBN-13: 978-1938549304.

T6. Odrey N., Weiss M., Groover M., Nagel R., Dutta A., Industrial Robotics -Technology ,Programming and Applications (SIE), McGraw Hill, 2017. ISBN-13: 978-1259006210.

Essential Reading / Recommended Reading

R1. Fu K.S, Gonzalez.R.C,& Lee, C.S.G, “Robotics control, sensing, vision and intelligence”, McGraw Hill Book Co., Singapore, Digitized 2010. ISBN-13: 978-0070226258

R2. Deb .S.R, “Robotics technology and flexible automation”, Tata McGraw Hill publishing company limited, New Delhi, 2010. ISBN: 9780070077911.

R3.  Miller M.R., Miller M., “Robots and Robotics: Principles, Systems, and Industrial Applications,” McGraw Hill, 2017. ISBN: 9781259859786.

R4. Low K.H., Industrial Robotics: Programming, Simulation and Applications, InTech Open, 2006. ISBN: 3-86611-286-6. 

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

CEOE561E01 - SOLID WASTE MANAGEMENT (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Objective of this paper is to provide managing solid wastes. It is designed as a source of information on solid waste management, including the Principles of Solid waste management, Processing and Treatment, Final disposal, Recycle and Reuse.

Learning Outcome

CO1: Identify characteristics and Functional elements of solid waste management (L2, L3)

CO2: Develop different methods of solid waste collection and transportation systems. (L2, L3)

CO3: Explain different solid waste treatment and processing techniques. (L2)

CO4: Explain sanitary landfill and different composting techniques. (L2)

CO5: Understand the different disposal methods, significance of recycling, reuse and reclamation of solid wastes. (L2)

Unit-1
Teaching Hours:9
Introduction
 

Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management

Unit-1
Teaching Hours:9
Sources
 

Classification and characteristics – municipal, commercial and industrial. Methods of quantification

Unit-1
Teaching Hours:9
Introduction
 

Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management

Unit-1
Teaching Hours:9
Sources
 

Classification and characteristics – municipal, commercial and industrial. Methods of quantification

Unit-1
Teaching Hours:9
Introduction
 

Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management

Unit-1
Teaching Hours:9
Sources
 

Classification and characteristics – municipal, commercial and industrial. Methods of quantification

Unit-2
Teaching Hours:9
Collection and Transportation
 

Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems.

Unit-2
Teaching Hours:9
Collection and Transportation
 

Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems.

Unit-2
Teaching Hours:9
Collection and Transportation
 

Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems.

Unit-3
Teaching Hours:9
INCINERATION
 

Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration.

Unit-3
Teaching Hours:9
TREATMENT/PROCESSING TECHNIQUES
 

Components separation, volume reduction, size reduction, chemical reduction and biological processing problems.

Unit-3
Teaching Hours:9
INCINERATION
 

Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration.

Unit-3
Teaching Hours:9
TREATMENT/PROCESSING TECHNIQUES
 

Components separation, volume reduction, size reduction, chemical reduction and biological processing problems.

Unit-3
Teaching Hours:9
INCINERATION
 

Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration.

Unit-3
Teaching Hours:9
TREATMENT/PROCESSING TECHNIQUES
 

Components separation, volume reduction, size reduction, chemical reduction and biological processing problems.

Unit-4
Teaching Hours:9
COMPOSTING
 

Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting

Unit-4
Teaching Hours:9
SANITARY LAND FILLING
 

Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site  pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills.

Unit-4
Teaching Hours:9
COMPOSTING
 

Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting

Unit-4
Teaching Hours:9
SANITARY LAND FILLING
 

Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site  pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills.

Unit-4
Teaching Hours:9
COMPOSTING
 

Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting

Unit-4
Teaching Hours:9
SANITARY LAND FILLING
 

Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site  pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills.

Unit-5
Teaching Hours:9
DISPOSAL METHODS
 

Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling,  merits and demerits, biomedical wastes and disposal

Unit-5
Teaching Hours:9
RECYCLE AND REUSE
 

Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse.

Unit-5
Teaching Hours:9
DISPOSAL METHODS
 

Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling,  merits and demerits, biomedical wastes and disposal

Unit-5
Teaching Hours:9
RECYCLE AND REUSE
 

Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse.

Unit-5
Teaching Hours:9
DISPOSAL METHODS
 

Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling,  merits and demerits, biomedical wastes and disposal

Unit-5
Teaching Hours:9
RECYCLE AND REUSE
 

Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse.

Text Books And Reference Books:

Bhide and Sunderashan “Solid Waste Management in developing countries”,

Tchobanoglous “Integrated Solid Waste Management”,Mc Graw Hill.

Essential Reading / Recommended Reading

Peavy and Tchobanoglous“Environmental Engineering”,

Garg S K “Environmental Engineering”, Vol II

“Biomedical waste handling rules – 2000”.

Pavoni J.L. “Hand book on Solid Waste Disposal”

Evaluation Pattern

Sl No.

Evaluation Component

Module

Duration

(min)

Nature of Component

Validation

1

CIA I

Quiz, assignment, & test

------

Closed Book/ Open book

Written test

2

CIA II

MSE

120

Closed Book

MSE

3

CIA  III

        Quiz,           assignment,& test

-----

Closed Book/ Open book

Written test

4

Semester Exam

ESE

180

Closed Book

ESE

CEOE561E02 - DISASTER MANAGEMENT (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

 

Course would help to understand the scope and relevance of Multi Disciplinary approach in Disaster Management in a dynamic  world and to realize the responsibilities of individuals and institutions for effective disaster response and disaster risk reduction

 

 

Learning Outcome

CO-1: Explain Hazards and Disasters (L2, PO 4)

CO-2: Assess managerial aspects of Disaster Management, plan and explain risk analysis (L3, PO5)

CO-3: Relate Disasters and Development (L4, PO7)

CO-4: Compare climate change impacts and develop scenarios (L5, PO6)

CO-5: Categorize policies and institutional mechanisms in Disaster Management and the impacts on society (L5, PO7)

Unit-1
Teaching Hours:8
Introduction to Hazard and Disasters
 

 Principles of Disaster Management, Hazards, Risks and Vulnerabilities;  Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g  Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics

 

 
Unit-1
Teaching Hours:8
Introduction to Hazard and Disasters
 

 Principles of Disaster Management, Hazards, Risks and Vulnerabilities;  Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g  Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics

 

 
Unit-1
Teaching Hours:8
Introduction to Hazard and Disasters
 

 Principles of Disaster Management, Hazards, Risks and Vulnerabilities;  Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g  Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics

 

 
Unit-2
Teaching Hours:8
Disaster Management Cycle and Humanitarian Logistics
 

Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management.

 

 
Unit-2
Teaching Hours:8
Disaster Management Cycle and Humanitarian Logistics
 

Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management.

 

 
Unit-2
Teaching Hours:8
Disaster Management Cycle and Humanitarian Logistics
 

Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management.

 

 
Unit-3
Teaching Hours:8
Natural resources and Energy sources
 

 

Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems.

 
Unit-3
Teaching Hours:8
Natural resources and Energy sources
 

 

Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems.

 
Unit-3
Teaching Hours:8
Natural resources and Energy sources
 

 

Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems.

 
Unit-4
Teaching Hours:10
Global Environmental Issues
 

 

Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFCs and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers.

 

 
Unit-4
Teaching Hours:10
Global Environmental Issues
 

 

Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFCs and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers.

 

 
Unit-4
Teaching Hours:10
Global Environmental Issues
 

 

Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFCs and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers.

 

 
Unit-5
Teaching Hours:11
Disaster Risk Reduction and Development
 

Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries.

Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management.

Technical Tolls for Disaster Management: Monitoring,  Management program for disaster mitigation ;  Geographical Information System(GIS) ; Role of Social Media in Disaster Management

 
Unit-5
Teaching Hours:11
Disaster Risk Reduction and Development
 

Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries.

Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management.

Technical Tolls for Disaster Management: Monitoring,  Management program for disaster mitigation ;  Geographical Information System(GIS) ; Role of Social Media in Disaster Management

 
Unit-5
Teaching Hours:11
Disaster Risk Reduction and Development
 

Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries.

Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management.

Technical Tolls for Disaster Management: Monitoring,  Management program for disaster mitigation ;  Geographical Information System(GIS) ; Role of Social Media in Disaster Management

 
Text Books And Reference Books:

 

T1. Paul, B.K, “Environmental Hazards and Disasters: Contexts, Perspectives and Management”, Wiley-Blackwell, 2011. (Unit 1 – Chapter 1; Unit 2 – Chapter 1, 3; Unit 3 – Chapter 4; Unit 4 – Chapter 5 & 6)

T2. Keller, Edward, and Duane DeVecchio. “Natural hazards: earth's processes as hazards, disasters, and catastrophe”s. Pearson Higher Education AU, 2015. (Unit 5 – Chapter 6 & 7)

 
Essential Reading / Recommended Reading

R1.  Coppola, D, “Introduction to International Disaster Management “Elsevier, 2015.

 

R2. Fookes, Peter G., E. Mark Lee, and James S. Griffiths. "Engineering geomorphology: theory and practice." Whittles Publications, 2007.

 

R3. Tomasini, R. And Wassanhove, L.V (2009). Humanitarian Logistics. Pangrave Macmillan.

 
Evaluation Pattern

Ser No

Evaluation Component

Module

Duration (Mins)

Nature Of Component

Weightage Of Module

Validation

1

CIA I

Assignment

Quizes

 

Open Book

Assignment 50%  Quiz 30% Class participation 20% 100%

 

2

CIA II

MSE

120

CLOSED BOOK

 

 

3

CIA III

Assignment

 

Research Oriented

 

 

4

SEMESTER EXAM

ESE

180

CLOSED BOOK

 

Written Test

 

IC521 - INDIAN CONSTITUTION (2022 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:0
Credits:0

Course Objectives/Course Description

 

It create awareness on the rights and responsibilities as a citizen of India and to understand the administrative structure, legal system in Inida.

Learning Outcome

CO1: To understand constitutional provisions and responsibilities

CO2: To understand the administrative powers and legal provisions

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Text Books And Reference Books:

B R Ambedkar, ‘The Constitution of India’. Government of India

Essential Reading / Recommended Reading

Durga Das Basu, Introduction to the Constitution of India, LexisNexis, 24th edition

Evaluation Pattern

Only class evaluations and discussions

MAHO531DMP - REVERSE ENGINEERING (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Courseobjectives:

•        Understand the concept of reverse engineering

•        Understand principles of imaging, cross-sectional scanning, digital data, computational graphics

 

•        Understand the legality of the reverse engineering concept

Learning Outcome

CO1: Use the Digitized Shape Editor (DSE) workbench. (L3)

CO2: Import and process the digitized data (scans or clouds of points), {L3}

CO3: Quick Surface Reconstruction (QSR) from the digitized data. {L3}

CO4: Create a mesh and extract characteristic curves to create surfaces using point cloud data.{ L3}

CO5: Determine the legalities of reverse engineered products and designs. {L2}

Unit-1
Teaching Hours:9
Introduction
 

Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process.

Unit-1
Teaching Hours:9
Introduction
 

Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process.

Unit-1
Teaching Hours:9
Introduction
 

Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process.

Unit-2
Teaching Hours:9
Tools and Techniques for RE
 

Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification.

Unit-2
Teaching Hours:9
Tools and Techniques for RE
 

Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification.

Unit-2
Teaching Hours:9
Tools and Techniques for RE
 

Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification.

Unit-3
Teaching Hours:9
RP Technology
 

Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing.

Unit-3
Teaching Hours:9
RP Technology
 

Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing.

Unit-3
Teaching Hours:9
RP Technology
 

Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing.

Unit-4
Teaching Hours:9
REVERSE ENGINNERING AND REUSE
 

Cognitive approach to RE, Integration of formal and structured methods in reverse engineering,

Integration of reverse engineering and reuse.

Unit-4
Teaching Hours:9
REVERSE ENGINNERING AND REUSE
 

Cognitive approach to RE, Integration of formal and structured methods in reverse engineering,

Integration of reverse engineering and reuse.

Unit-4
Teaching Hours:9
REVERSE ENGINNERING AND REUSE
 

Cognitive approach to RE, Integration of formal and structured methods in reverse engineering,

Integration of reverse engineering and reuse.

Unit-5
Teaching Hours:9
Copyright laws
 

Legal Aspects of Reverse engineering- copyright laws

Unit-5
Teaching Hours:9
Copyright laws
 

Legal Aspects of Reverse engineering- copyright laws

Unit-5
Teaching Hours:9
Copyright laws
 

Legal Aspects of Reverse engineering- copyright laws

Text Books And Reference Books:

Units

 

Unit-1

Scope and tasks of RE, Process of duplicating, Definition and use of Reverse Engineering, Reverse Engineering as a Generic Process.

 

Unit-2

Tools and Techniques for RE

Object scanning: contact scanners, noncontact scanners, destructive method, coordinate measuring machine, Point Data Processing: pre processing and post processing of captured data, geometric model development, construction of surface model, solid model, noise reduction, feature identification, model verification.

 

Unit-3

Introduction, current RP techniques and materials, Stereo Lithography, Selective Laser Sintering, Fused Deposition Modelling, Three-dimensional Printing, Laminated Object Manufacturing, Multijet Modelling, Laser-engineered Net Shaping, Rapid Prototyping, Rapid Tooling, Rapid Manufacturing.

 

Unit-4

Cognitive approach to RE, Integration of formal and structured methods in reverse engineering,

Integration of reverse engineering and reuse.

 

Unit-5

Legal Aspects of Reverse engineering- copyright laws

 

Essential Reading / Recommended Reading

Text Books:

1. Product Design: Techniques in Reverse Engineering and New Product Development by K. Otto and K. Wood Prentice Hall, 2001.

2. Reverse Engineering: An Industrial Perspective by Raja and Fernandes. Springer-Verlag

2008

 

3. Reverse Engineering in Computer Applications. MIT Lecture Notes 2001

 

Evaluation Pattern

Total Hrs in a semester

CIA I -Evaluated out of (20/30)

CIA I cnverted to (10)

CIA II - Evaluated out of (50)

CIA II cnverted to ( 25/ ) 

Mention Whether CIA II is Centralized exam or department level Assessment

CIA III - Evaluated out of (20/30)

CIA III cnverted to (10)

Total CIA

Total CIA is scaled down to 20/45/55/65

If CIA is final Submission -Evaluated out of

Is there CIA minimum, if yes give the minimum CIA

Att. Marks

ESE Evaluated out of (50/100)

ESE converted to (50/100)

75

20

10

10

25

Centralized

20

10

90

65

50

20

5

100

30

MAHO582DMP - PROJECT (2022 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Project work Phase-I includes identifying the problem, literature review and necessary ground work so as to continue it as Phase-II during VIII semester.

Presentations on these are to be given as per the schedule announced by the department.

Learning Outcome

CO1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2]

CO 2: Develop a skill for handling multiple situations, practical problems, analyzing teamwork and communication abilities. [L2]

CO 3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L3]

CO4: Analyze the work environment and create solutions to problems. [L4]

CO5: Build a record of work experience and construct a good relationship with the teammates. [L5]

Unit-1
Teaching Hours:60
Project
 

Continuous Internal Assessment:50 Marks

  • Presentation assessed by Panel Members
  • Assessment by the Guide
  • Project  Progress Reports
Unit-1
Teaching Hours:60
Project
 

Continuous Internal Assessment:50 Marks

  • Presentation assessed by Panel Members
  • Assessment by the Guide
  • Project  Progress Reports
Unit-1
Teaching Hours:60
Project
 

Continuous Internal Assessment:50 Marks

  • Presentation assessed by Panel Members
  • Assessment by the Guide
  • Project  Progress Reports
Text Books And Reference Books:

Journals

Essential Reading / Recommended Reading

Journals

Evaluation Pattern

Project progress report 50 Marks

VIVA 50 Marks

 

 

MAOE561E01 - APPLIED STATISTICS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To enable the students to describe the fundamentals of statistics, estimate best fit curve, correlation and regression through data analysis, develop a deep understanding of axioms, random variables and probability functions, test the hypothesis for small and large samples by various statistical tools.

Learning Outcome

CO1: Determine the mean, median, mode and expectation by using the fundamentals of statistics.

CO2: Estimate the best fit curve, correlation and regression through data analysis.

CO3: Determine the probability density function of discrete and continuous random variables by applying the key concepts of probability.

CO4: Calculate the mean, variance and probability density function of different theoretical distribution.

CO5: Test the hypothesis of small and large samples using various statistical tools.

Unit-1
Teaching Hours:9
Probability
 

Fundamentals of Statistics, Mean, median, mode, expectation.

Unit-1
Teaching Hours:9
Probability
 

Fundamentals of Statistics, Mean, median, mode, expectation.

Unit-1
Teaching Hours:9
Probability
 

Fundamentals of Statistics, Mean, median, mode, expectation.

Unit-1
Teaching Hours:9
Probability
 

Fundamentals of Statistics, Mean, median, mode, expectation.

Unit-2
Teaching Hours:9
Curve Fitting
 

Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression

Unit-2
Teaching Hours:9
Curve Fitting
 

Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression

Unit-2
Teaching Hours:9
Curve Fitting
 

Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression

Unit-2
Teaching Hours:9
Curve Fitting
 

Curve fitting by the method of least squares, y = a + bx, y = ax^b, y = ab^x, y = ae^bx, Correlation and Regression

Unit-3
Teaching Hours:9
Random Variable
 

Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance.

Unit-3
Teaching Hours:9
Random Variable
 

Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance.

Unit-3
Teaching Hours:9
Random Variable
 

Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance.

Unit-3
Teaching Hours:9
Random Variable
 

Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance.

Unit-4
Teaching Hours:9
Sampling
 

Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions.

Unit-4
Teaching Hours:9
Sampling
 

Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions.

Unit-4
Teaching Hours:9
Sampling
 

Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions.

Unit-4
Teaching Hours:9
Sampling
 

Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions.

Unit-5
Teaching Hours:9
Testing Tools
 

Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools

Unit-5
Teaching Hours:9
Testing Tools
 

Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools

Unit-5
Teaching Hours:9
Testing Tools
 

Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools

Unit-5
Teaching Hours:9
Testing Tools
 

Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools

Text Books And Reference Books:

T1. Ross, S., “A first course in probability”, 9th Edition, Pearson Education, Delhi,  2012.

T2. T. Veerarajan, “Probability, Statistics and Random process”, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.

Essential Reading / Recommended Reading

Allen., A.O., “Probability, Statistics and Queuing Theory”, Academic press, New Delhi, 1981. 

Evaluation Pattern

Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks)

End Semester Examination(ESE) : 50% (50 marks out of 100 marks)

 

Components of the CIA

CIA I  :  Assignments / Tests                                             : 10 marks

CIA II :   Mid Semester Examination (Theory)                : 25 marks            

CIAIII:    Quiz/Seminar/Assignments                             : 10 marks

Attendance                                                                           : 05 marks

            Total                                                                                       : 50 marks

Mid Semester Examination (MSE) : Theory Papers:

  • The MSE is conducted for 50 marks of 2 hours duration.
  • Question paper pattern; Four questions have to be answered in part A without any choice. One question need to be answered out of two in part B. Each  question carries 10 marks

End Semester Examination (ESE):

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

25 % - Complex level questions

 
     

 

 

MICSAI533 - FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (2022 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course provides a strong foundation of fundamental concepts in Artificial Intelligence. To provide a basic

exposition to the goals and methods and to enable the student to apply these techniques in applications which involve

perception, reasoning and learning.

Learning Outcome

CO1: Study the basic concepts of Artificial Intelligence and Production Systems

CO2: Learn about knowledge representation and inferencing for various logic

CO3: Know about Game Playing concepts for toy problems

CO4: Introduce the concepts of Learning.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-1
Teaching Hours:12
INTRODUCTION
 

Intelligent Agents – Agents and environments - Good behavior – The nature of

environments – structure of agents - Problem Solving - problem solving agents –

example problems – searching for solutions – uniformed search strategies -

avoiding repeated states – searching with partial information.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-2
Teaching Hours:12
SEARCHING TECHNIQUES
 

Informed Heuristics Search Strategies -Heuristic function - Greedy - best -first

 

9H+6H

 

search-A* Algorithms. local search algorithms and optimization problems –Hill-

climbing Search, Simulated annealing, Local beam Search, Genetic algorithm -

Searching with partial observations - Online Search Agents and Unknown

Environment.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-3
Teaching Hours:12
GAME PLAYING AND CSP
 

Games – Optimal decisions in games –Min-Max algorithm- Alpha – Beta Pruning

–imperfect real-time decision –Stochastic Games.

Constraint Satisfaction Problem (CSP): Definition - Constraint propagation -

Backtracking search - Local Search -The Structure of problems.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-4
Teaching Hours:12
KNOWLEDGE REPRESENTATION
 

First order logic – representation revisited – Syntax and semantics for first order

 

6H+2H

 

logic – Using first order logic – Knowledge engineering in first order logic -

Inference in First order logic – prepositional versus first order logic – unification

and lifting – forward chaining – backward chaining - Resolution - Knowledge

representation - Ontological Engineering - Categories and objects – Actions -

Simulation and events - Mental events and mental objects.

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Unit-5
Teaching Hours:12
LEARNING
 

Learning from Examples : Forms of Learning - Supervised learning - Learning

Decision Trees - Regression and classification with linear models, Artificial

Neural Network. Knowledge in Learning : Logical formulation of learning –

Explanation based learning – Learning using relevant information – Inductive

logic programming. Statistical learning- Learning with complete data - Learning

with hidden variable

Text Books And Reference Books:

1. Stuart Russell and Peter Norvig, “Artificial Intelligence – A Modern Approach”,

4th Edition, Pearson Education, 2020.

2. Elaine Rich; Kevin Knight; Shivashankar B Nair, “Artificial Intelligence”, 3rd

Edition, Tata McGraw- Hill, 2019.

Essential Reading / Recommended Reading

1. Nils J. Nilsson, “Artificial Intelligence: A New Synthesis”, 1st Edition, Harcourt

Asia Pvt. Ltd., 2012.

2. George F. Luger, “Artificial Intelligence-Structures and Strategies for Complex

Problem Solving”, 6th Edition, Pearson Education / PHI, 2009.

3. M. Tim Jones, ―Artificial Intelligence: A Systems Approach (Computer Science),

Jones and Bartlett Publishers, Inc.; First Edition, 2008

4. Gerhard Weiss, ―Multi Agent Systems‖, Second Edition, MIT Press, 2013.

5. David L. Poole and Alan K. Mackworth, ―Artificial Intelligence: Foundations of

Computational Agents‖, Cambridge University Press, 2010.

Evaluation Pattern

CIA 1 -20

CIA 2 - 50

CIA3 -20

NCCOE01 - NCC1 (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

·       This Course is offered for cadets of NCC who have successfully completed their B- Certificate and Who are eligible for B Certificate.

·       This Course is offered for the NCC cadets in the Open Elective course offered by the department during the 5th Semester.   

Learning Outcome

CO 1: Interpret the fundamentals of NCC and National Integration

CO 2: Demonstrate the fundamentals of Foot drill and Rifle Drill

CO 3: Relate to the Social need and discover Rural development progrms

CO 4: Illustrate the Factors in personality Development through skill enhancement

CO 5: Summarize disasters and summarize various First aid

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

As instructuted by commdant

Evaluation Pattern

The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following.

·       Each cadet will appear for ‘B’ Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350.  Cadets who are eligible for 'B' Certificate, will be evaluated based on Written Exams(50marks), Contribution to NCC(30marks),Camps(20Marks).

·       Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet. 

RM531P - DATA ACQUISITION AND ROBOTIC VISION (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course objectives: 

At the end of the course, the students would be able  

        To deal with basics concepts for selection of sensors and the signal conditioning necessary to include these in a data acquisition system.

        To investigate the analogue to digital and digital to analogue conversion principles and their practical applications for data acquisition and control.

        To learn about the selection of output drivers and devices

To learn about the machine vision systems and its application

 

Learning Outcome

CO1: Represent the equivalent circuit of sensors and describe their significant properties (L2).

CO2: Choose the type of signal conditioning circuits to be used for a specific sensor.(L3).

CO3: Discuss the data conversion circuits and the constraints involved in their design.(L3)

CO4: Examine the requirements for interfacing circuit design.(L3)

CO5: Develop simple working model of a complete data acquisition system.(L2).

Unit-1
Teaching Hours:9
Introduction to Data Acquisition
 

Overview of data acquisition systems, Types of sensors used in data acquisitionSignal conditioning and amplification, Sampling theorem and analog-to-digital conversion

Unit-2
Teaching Hours:6
Sensors for Robotic Vision
 

Signal conditioning: Amplification, Impedance Matching, Instrumentation Amplifiers, Charge Amplifiers, Filtering, attenuation, Noise Reduction and Isolation – Grounding Conflict, Ground Loops, Cross Talk, Shielded Wiring, Isolation, Linearization, Circuit protection.

Unit-3
Teaching Hours:9
Data Acquisition Techniques
 

Wired and wireless communication protocols, Synchronization and data fusion, Calibration techniques for sensor alignment and accuracy, Real-time data acquisition considerations

Unit-4
Teaching Hours:9
Image Processing Fundamentals
 

Image representation and formats, Image enhancement techniques, Image segmentation and feature extraction, Object detection and recognition, Introduction to machine learning for vision tasks

Unit-5
Teaching Hours:9
Integration of Data Acquisition and Robotic Vision
 

Sensor integration with robotic platforms, Sensor fusion for multi-modal perception

Closed-loop control using sensor feedback

Case studies: Automated Navigation guidance by vision system – vision based de palletizing- line tracking-. Automatic part Recognition., Autonomous Navigation with Digital Twin

Text Books And Reference Books:

T1. Bentley, John P. Principles of Measurement Systems, 4:th edition, Pearson/Prentice Hall, 2005.

T2. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, Machine Vision, Tata McGraw Hill, 1991.

Essential Reading / Recommended Reading

R1.1.    Jacob Fraden, Handbook of Modern Sensors – Physics, Design and Applications, Fourth Edition, Springer, 2010.

R2. 2.   Data Acquistion Handbook, A Reference for DAQ and analog and digital signal conditioning, 3rd Edition, 2012.

R3. Fu K S, Gonzalez R C, Lee C.S.G, Robotics: Control, Sensing, Vision and Intelligence, McGraw Hill, 1987.

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM532P - FLUID POWER AUTOMATION (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

At the end of the course, the students would be able

1. To familiarize with the basic concepts of industrial automation.

2. To acquaint with the concept of low cost automation with pneumatic and hydraulic systems.

3. To familiarize with the elements of electrical control systems.

4. To acquaint with the concepts related to fluid power.

Learning Outcome

CO1: Understanding the concept of fluid power generation.

CO2: Illustrate the working principles of fluid power accessories like pumps, control valves and actuators.

CO3: Develop hydraulic and pneumatic circuits for various applications

CO4: Analyze hydraulic and pneumatic circuits for various applications

CO5: Demonstrate the use of electrical and electronics control in pneumatic and hydraulic circuits.

CO6: Design and trouble shoot hydraulic and pneumatic circuit for various applications

Unit-1
Teaching Hours:9
Introduction Fluid Power Generating/Utilizing Elements:
 

Hydraulic pumps and motor, gears, vane, piston. Pumps & motors- selection and specification-Drive characteristics – Linear actuator – Types, mounting details, cushioning – power packs – construction. Reservoir capacity, heat dissipation, accumulators and their types. Applications of Accumulator circuits. Standard circuit symbols, circuit (flow) analysis. Different types of compressors and Actuators in Pneumatics, their applications and use of their ISO symbols.

Unit-2
Teaching Hours:9
Control Components In Hydraulic Systems:
 

Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, symbolic representation.

Unit-3
Teaching Hours:9
Control Valves & Signal Processing Elements:
 

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Speed control of cylinders - supply air throttling and Exhaust air throttling.

Signal Processing Elements: Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependent controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications.

Unit-4
Teaching Hours:9
Circuit Design: Basic Hydraulic Circuits and Pneumatic Circuit Designing:
 

Basic Hydraulic Circuits: Meter in, meter out and Bleed off circuits; Intensifier circuits, Regenerative Circuit, Counter balance valve circuit and sequencing circuits.

Pneumatic Circuit Designing: Design of Pneumatic sequencing circuits using Cascade method and Shift register method (up to 3 cylinders).

Unit-5
Teaching Hours:9
Electro- Pneumatics and electro hydraulics:
 

Principles - signal input and output, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple Electro- Pneumatics and electro hydraulics application.

Text Books And Reference Books:

T1. Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing (3rd Edition), PHI Learning Private Limited, New Delhi, 2008.

T2. Joji P., Pneumatic Controls, Wiley India Pvt. Ltd., 2008.

 

T3. Peter Croser, Frank Ebel, Pneumatics Basic Level, Festo Didactic GmbH & Co. Germany. Prede T4. G., Scholz D., Electropneumatics Basic Level, Festo Didactic GmbH & Co. Germany.

Essential Reading / Recommended Reading

R1. S.Ilango and V. Soundararajan, Introduction to Hydraulics and Pneumatics, PHI Learning Pvt. Ltd. New Delhi.

R2. Industrial Hydraulics Manual, Sperry & Vickers Co.

R3. Shanmuga Sundaram.K, Hydraulic and Pneumatic controls, Chand& Co. 2006.

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

 

Component

Assessed for

Minimum marks

to pass

Maximum

marks

1

Theory CIA

30

-

30

2

Theory ESE

30

12

30

3

Practical CIA

35

14

35

4

Attendance

05

-

05

4

Aggregate

100

40

100

 

DETAIL OF MARK FOR COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

     Minimum marks required to pass in practical component is 40%.

     Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course.

     A minimum of 40 % required to pass in ESE -Theory component of a course.

     Overall 40 % aggregate marks in Theory & practical component, is required to pass a course.

     There is no minimum pass marks for the Theory - CIA component.

     Less than 40% in practical component is refereed as FAIL.

     Less than 40% in Theory ESE is declared as fail in the theory component.

 

     Students who failed in theory ESE have to attend only theory ESE to pass in the course

RM533 - DESIGN OF MACHINE ELEMENTS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

     The student shall gain appreciation and understanding of the design function in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity.

     The student shall be able to choose proper materials to different machine elements depending on their physical and mechanical properties. Thus he shall be able to apply the knowledge of material science in real life usage.

     Student shall gain a thorough understanding of the different types of failure modes and criteria. He will be conversant with various failure theories and be able to judge which criterion is to be applied in which situation.

     Student shall gain design knowledge of the different types of elements used in the machine design process. E.g., fasteners, shafts, couplings etc. and will be able to design these elements for each application.

Learning Outcome

CO-1: Discuss the function of machine elements in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity. (L2)

CO-2: Analyze the different types of failure modes and will be conversant with various failure theories and be able to judge which criterion is to be applied in which situation. (L2).

CO-3: Apply the knowledge of the curved beams and cylinders in determining the stresses developed for its real time usage. (L3).

CO-4: Select the type of spring required for the application and will be able to calculate dimensions of spring. (L3).

CO-5: Design the different types of elements used in the machine design process. Eg. Riveted joint, Welded Joints etc. and will be able to design these elements for each application. (L3).

Unit-1
Teaching Hours:9
Definitions:
 

Introduction:  Normal,  shear,  biaxial  and  tri  axial stresses,  Stress  tensor,  Principal  Stresses.  Engineering Materials and their mechanical   properties,   Stress-Strain   diagrams,   Stress   Analysis,   Design considerations: Codes and Standards.

Unit-2
Teaching Hours:9
Design For Fatigue Strength:
 

Introduction-  S-N  Diagram,  Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying  factors:  size  effect,  surface  effect,  Stress  concentration  effects,  Fluctuating  stresses,  Goodman  and  Soderberg  relationship, stresses  due  to combined loading, cumulative fatigue damage.

Unit-2
Teaching Hours:9
Static Strength:
 

Static loads  and  factor  of  safety,  Theories  of  failure:  Maximum  normal  stress theory,  Maximum  shear  stress  theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.

 

 

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia.

Unit-3
Teaching Hours:9
Curved Beams:
 

Stresses  in  curved  beams  of  standard  cross sections  used  in  crane  hook,  punching  presses  &  clamps,  closed  rings  and links

Unit-3
Teaching Hours:9
Cylinders & Cylinder Heads:
 

Review  of  Lame’s  Equations; compound  cylinders,  stresses  due  to  different  types  of  fits,  cylinder  heads, flats.

Unit-4
Teaching Hours:9
Design Of Springs:
 

Types of springs - stresses in Helical coil springs of circular and  non-circular  cross  sections.  Tension and compression springs, springs under fluctuating loads, Leaf Springs:  Stresses in leaf springs.  Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs.

Unit-5
Teaching Hours:9
Riveted and Welded Joints
 

Types,  rivet  materials,  failures  of riveted  joints,  Joint  Efficiency,  Boiler  Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, Eccentrically loaded welded joints. 

Unit-5
Teaching Hours:9
Threaded Fasteners:
 

Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints.

Text Books And Reference Books:

T1. Design of Machine Elements 1, K Raghavendra, CBS Publishers and Distributors Private Limited, New Delhi, 1nd Edition 2017.

T2. Design of Machine Elements 2, K Raghavendra, CBS Publishers and Distributors Private Limited, New Delhi, 1nd Edition 2015.

T3. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke, McGraw Hill International edition, 6th Edition 2009.

T4. Design of Machine Elements, V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 3rd Edition first reprint 2010.

Essential Reading / Recommended Reading

R1.Robert L. Norton, “Machine Design”, 3rd Impression, Pearson Education Asia, 2008.

R2. M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, “Design of Machine Elements”, Special Indian Edition, Pearson Education, 2006.

R3. Hall, Holowenko, Laughlin, “Machine Design”, Special Indian Edition, Schaum’s Outlines series, Tata McGraw Hill Publishing Company Ltd., 2010.

R4. Robert C. Juvinall and Kurt M Marshek, “Fundamentals of Machine Component Design”, 5th Edition, Wiley India Pvt. Ltd., 2012.

DESIGN DATA HANDBOOKS:

1. K. Lingaiah, “Design Data Hand Book”, 4th edition, McGraw Hill, 2013.

2. K. Mahadevan and Balaveera Reddy, “Design Data Hand Book”, 4th edition, CBS Publication, 2013.

3. H.G. Patil, Shri ShashiPrakashan, “Design Data Hand Book”, Belgaum. Reprint, I K International Publishing house, 2011

Evaluation Pattern

ASSESSMENT - ONLY FOR THEORY COURSE {without practical component}

     Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks}

     End Semester Examination{ESE}         : 50% {50 marks out of 100 marks}

Components of the CIA

CIA I   :  Subject Assignments / Online Tests                      : 10 marks

CIA II  :   Mid Semester Examination {Theory}                    : 25 marks                  

CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications                                                                                              : 10 marks

Attendance                                                                             : 05 marks

            Total                                                                           : 50 marks

Mid Semester Examination {MSE} : Theory Papers:

     The MSE is conducted for 50 marks of 2 hours duration.

     Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks

End Semester Examination {ESE}:

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year.

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

25 % - Complex level questions 

RM544E1 - AUTONOMOUS VEHICLES (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students to:

     To understand the rational for and evolution of automotive electronics;

     To understand which automotive systems have been replaced by electronic control systems and the advantage of doing so;

     To understand the fundamental theory of operation of electronic control systems;

     To understand the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles;

 

     To understand the concept of remote sensing and the types of sensor technology needed to implement remote sensing

Learning Outcome

CO1: To illustrate modern vehicle display/cluster technology. (L2)

CO2: To interpret possible evolution of vehicle prognostics and impaired driver technology. (L2)

CO3: To understand the concept of fully autonomous vehicles. (L2)

CO4: To apply the concepts of programming of ECUs. (L3)

CO5: To understand the fundamental principles of data networking and its roll in ADAS and future autonomous vehicles (L2)

Unit-1
Teaching Hours:9
Introduction to Automated, Connected, and Intelligent Vehicles
 

Introduction to the Concept of Automotive Electronics, Automotive Electronics Overview, History & Evolution, Infotainment, Body, Chassis, and Powertrain Electronics, Advanced Driver Assistance Electronic Systems

Unit-1
Teaching Hours:9
Connected and Autonomous Vehicle Technology
 

Basic Control System Theory applied to Automobiles, Overview of the Operation of ECUs, Basic Cyber-Physical System Theory and Autonomous Vehicles, Role of Surroundings Sensing Systems and Autonomy, Role of Wireless Data Networks and Autonomy

Unit-2
Teaching Hours:9
Sensor Technology for Advanced Driver Assistance Systems
 

Basics of Radar Technology and Systems, Ultrasonic Sonar Systems, Lidar Sensor Technology and Systems, Camera Technology, Night Vision Technology, Other Sensors, Use of Sensor Data Fusion, Integration of Sensor Data to On-Board Control Systems

Unit-2
Teaching Hours:9
Overview of Wireless Technology
 

Wireless System Block Diagram and Overview of Components, Transmission Systems – Modulation/Encoding, Receiver System Concepts – Demodulation/Decoding, Signal Propagation Physics, Basic Transmission Line and Antenna Theory

Unit-3
Teaching Hours:9
Connected Car Technology
 

Connectivity Fundamentals, Navigation and Other Applications, Vehicle-to-Vehicle Technology and Applications, Vehicle-to-Roadside and Vehicle-to-Infrastructure Applications, Wireless Security Overview

Unit-3
Teaching Hours:9
Wireless Networking and Applications to Vehicle Autonomy
 

Basics of Computer Networking – the Internet of Things, Wireless Networking Fundamentals, Integration of Wireless Networking and On-Board Vehicle Networks, Review of On-Board Networks – Use & Function

Unit-4
Teaching Hours:9
Advanced Driver Assistance System Technology
 

Basics of Theory of Operation, Applications – Legacy, New, Future, Integration of ADAS Technology into Vehicle Electronics, System Examples, Role of Sensor Data Fusion Electrical Systems

Unit-4
Teaching Hours:9
Impaired Driver Technology
 

Driver Impairment Sensor Technology, Sensor Technology for Driver Impairment Detection, Transfer of Control Technology

Unit-5
Teaching Hours:9
Driverless Car Technology
 

Moral, Legal, Roadblock Issues, Technical Issues, Security Issues

Present Advanced Driver Assistance System Technology Examples

• Toyota, Nissan, Honda, Hyundai

• Volkswagen, BMW, Daimler

• Fiat Chrysler Automobiles

Text Books And Reference Books:

T1. Autonomous Vehicles, by Steven Van Uytsel, Edition: 1st Edition, 2021, Publisher: Springer

T2. Autonomous Vehicles, Publisher, Nicu Bizon, Nova Science Publishers Inc, ISBN: 9781633213241, 9781633213241

Essential Reading / Recommended Reading

R1. G. Mullett, Wireless Telecommunications Systems and Networks, Thomson – Delmar Learning, ISNB#1-4018-8659-0,2006

R2. Autonomous Control Systems and Vehicles, Kenzo Nonami, Muljowiodo Kartidjo, Kwang-Joon Woon,  Publisher: Springer Verlag, Japan, ISBN: 9784431542759, 9784431542759

R3. Automobile engineering, Kirpal Singh. Vol I and II 2002.

Evaluation Pattern

ASSESSMENT - ONLY FOR THEORY COURSE {without practical component}

     Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks}

     End Semester Examination{ESE}         : 50% {50 marks out of 100 marks}

Components of the CIA

CIA I   :  Subject Assignments / Online Tests                      : 10 marks

CIA II  :   Mid Semester Examination {Theory}                    : 25 marks                  

CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications                                                                                              : 10 marks

Attendance                                                                             : 05 marks

            Total                                                                           : 50 marks

Mid Semester Examination {MSE} : Theory Papers:

     The MSE is conducted for 50 marks of 2 hours duration.

     Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks

End Semester Examination {ESE}:

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year.

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

25 % - Complex level questions 

RM551 - MODELLING AND ANALYSIS LABORATORY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

At the end of the course, the students would be able to

     Simulation is used intensively in a field of design and development.

     Students will understand how to prepare the basic model and how to perform simulation on it by taking various assumption.

     Students can apply the knowledge they have obtained while studying FEM and Mechanical Vibration.

Learning Outcome

CO1: Exposed to use FEA softwares for modelling of machine components. (L2)

CO2: Applying the boundary conditions on the given system. (L2)

CO3: Solving Engineering Mechanics Problems by using Commercial FEM Tools. (L5)

Unit-1
Teaching Hours:8
List of Experiments
 

List of Experiments (If any):

Practical Hours

          1. Solid modelling of engineering components.

8

2. Solid modelling of engineering assembly.

2

3. Stress analysis of a plate with circular hole

2

4.        Stress analysis of rectangular l bracket

2

5.        Stress analysis of beam

2

6.        Mode frequency analysis of beam

2

7.        Harmonic analysis of a 2d component

2

8.        Eigenvalue Buckling of a Square Tube

2

9.        Stress analysis of an axisymmetric component

2

10.     Thermal stress analysis of a 2d component

2

11.     Non-linear Analysis of Skew Plate

2

12.     Buckling of a Square Tube with Imperfections

2

13.     Hinge Model and Non-linear Analysis of Skew Plate

2

Text Books And Reference Books:

R1. M. Asghar Bhatti, “FUNDAMENTAL Finite Element Analysis and Applications with Mathematica and MATLAB Computations”, Wiley India Pvt. Ltd.

R2.Stormy Attaway, “Matlab: A Practical Introduction to Programming and Problem Solving”, 3rd edition, Butterworth-Heinemann Publisher.

R3.W. Y. Yang and W. C. T.-S. Chung., Applied Numerical Methods Using Matlab, John Wiley & Sons, Inc., 2005

R4.S. J. Chapman, MATLAB programming for engineers, New Delhi: Cengage Learning, 2004

R5.K. B. Datta, Matrix And Linear Algebra Aided with Matlab, New Delhi: PHI Learning Private Limited, 2009

R6.M. P. Coleman, An introduction to partial differential equations with MATLAB, Boca Raton: CRC Press, 2005

Essential Reading / Recommended Reading

R1. M. Asghar Bhatti, “FUNDAMENTAL Finite Element Analysis and Applications with Mathematica and MATLAB Computations”, Wiley India Pvt. Ltd.

R2.Stormy Attaway, “Matlab: A Practical Introduction to Programming and Problem Solving”, 3rd edition, Butterworth-Heinemann Publisher.

R3.W. Y. Yang and W. C. T.-S. Chung., Applied Numerical Methods Using Matlab, John Wiley & Sons, Inc., 2005

R4.S. J. Chapman, MATLAB programming for engineers, New Delhi: Cengage Learning, 2004

R5.K. B. Datta, Matrix And Linear Algebra Aided with Matlab, New Delhi: PHI Learning Private Limited, 2009

 

R6.M. P. Coleman, An introduction to partial differential equations with MATLAB, Boca Raton: CRC Press, 2005

Evaluation Pattern

 

ASSESSMENT - ONLY FOR PRACTICAL COURSE

     Continuous Internal Assessment {CIA} : 50% {25 marks out of 50 marks}

     End Semester Examination{ESE}         : 50% {25 marks out of 50 marks}

RM581 - MINI PROJECT (2022 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:50
Credits:2

Course Objectives/Course Description

 

The mini project work extends for a single semester and exposes the student to develop and present his/her work related to specific topic. Student shall select the project topic in consultation with mentor/guide/supervisor to his/her area of specialization and work on it. Student will prepare a report outlining objective of the project work, importance of the study, review of literature published in the relevant field and possible areas for further work. The student shall present seminar on this report. 

Learning Outcome

CO1: Students will be able to apply the skill of presentation and communication techniques

CO2: Students will be able to use their knowledge of the fundamentals of subjects to search the related literature

CO3: Student will be able to analyze the available resources and to select most appropriate one

CO4: Students will be able to apply a multidisciplinary strategy to address current, real world issues.

Unit-1
Teaching Hours:60
Guidelines for Mini Project
 

1. Mini project should be based on thrust areas in robotics and Mechatronics Engineering

2. Students should do literature survey and identify the topic of the seminar/mini project and finalize in Consultation with Guide/Supervisor.

3. Students should use multiple literatures.

Text Books And Reference Books:

The theme of the Project-related journal papers and reference books.

Essential Reading / Recommended Reading

The theme of the Project-related journal papers and reference books.

Evaluation Pattern

Overall-50marks

BTGE631 - CORPORATE SOCIAL RESPONSIBILITY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description:

 

This course will familiarize the students with the concept of corporate social responsibility. The evolution of CSR has far reaching consequences on the development sector in India. The collaboration of companies and NGOs with the community has initiated a new paradigm of change in the country. The students will have an overview of the theories and the frameworks developed in the area of CSR. The paper will discuss a few prominent case studies of CSR.

 Course Objectives 

  • To understand the concept of CSR and the theoretical underpinnings.

  • To understand the stakeholder approaches.

  • To provide an experiential, integrative, substantive, and high quality experience surrounding issues of Corporate Social Responsibility

  • To provide participating students with a truly unique curriculum experience with field experience.

Learning Outcome

CO1: The students will be able to demonstrate their understanding in general on CSR.

CO2: To exhibit their skill in executing the responsibilities and implementing different approaches in CSR.

CO3: The students will be able to critically evaluate the CSR programs of a corporate

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Text Books And Reference Books:

T1. Agarwal, S. (2008). Corporate social responsibility in India. Los Angeles: Response.

T2. Visser, W. (2007). The A to Z of corporate social responsibility a complete reference guide to concepts, codes and organizations. Chichester, England: John Wiley & Sons.

T3. Werther, W., & Chandler, D. (2006). Strategic corporate social responsibility: Stakeholders in a global environment. Thousand Oaks: SAGE Publications.

Essential Reading / Recommended Reading

R1. Crane, A. (2008). Corporate social responsibility: Readings and cases in a global context. London: Routledge.

R2. Baxi, C. (2005). Corporate social responsibility: Concepts and cases: The Indian experience. New Delhi, India: Excel Books.

Online Resources:

M1. https://www.coursera.org/learn/global-sustainability-be-sustainable

M2. https://www.coursera.org/learn/business-for-good-fundamentals-of-corporate-responsibility

Evaluation Pattern
  • CIA 1 - 20 Marks
  • CIA 2 - 50 Marks 
  • CIA 3 - 20 marks
  • ESE - 50 marks
  • Attendance – 5 Marks 
  • (Scaled: CIA – 25 Marks & ESE – 25 Marks)

 

BTGE632 - DIGITAL MEDIA (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

This course provides students the insight on search engine optimization, social media and digital marketing techniques that helps them understand how each of the social media platforms works and how to strategize for any type of objectives from clients. Students will discover the potential of digital media space and will have hands on experience with different digital platforms.

Learning Outcome

CO1: Understand search engine optimization (SEO) techniques and principles.

CO2: Gain expertise in managing and marketing on various social media platforms.

CO3: Apply digital marketing techniques to achieve specific business objectives.

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Text Books And Reference Books:

Phillip J. Windley, "Digital Identity" O'Reilly Media, 2005

Essential Reading / Recommended Reading

Dan Rayburn, Michael Hoch, "The Business of Streaming and Digital Media", Focal Press, 2005

Evaluation Pattern
  • CIA 1 - Evaluated out of 20, which will be converted to 10
  • CIA 2 - Mid Semester Exam evaluated out of 50, which will be converted to 25
  • CIA 3 - Evaluated out of 20, which will be converted to 10
  • Total CIA Marks after conversion - 45
  • Attendance Marks - 5
  • ESE Evaluated out of 100, which will be converted to 50
  • Total Marks = CIA (Total) + ESE + Attendance = 45 + 50 + 5 = 100

 

BTGE633 - ESSENTIAL SOFT SKILLS FOR PROFESSIONAL SUCCESS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: Essential Soft Skills for Professional Success consists of five units covering; Effective Communication for Personality, Critical Thinking for Problem Solving, Adaptability and Team Work, Time Management and Leadership skills, Empathy, Resilience and Stress Management. They will be explained followed by tasks/activities/case studies to strengthen the soft skills of the learners to develop their personality suitable for professional contexts.

Course objectives: Course is designed to equip the learners with essential soft skills to ensure the necessary enrichment in the personality that contributes for professional and personal success.

Learning Outcome

CO1: Identify the difference between communication and effective communication and communicate effectively, efficiently and professionally.

CO2: Use their critical thinking skills to solve complex problems in the professional and personal contexts.

CO3: Adapt to new challenges, situations, tools, projects, be active in teams and collaborate with intra and inter disciplinary experts for professional success.

CO4: Effectively manage time, guide, inspire and lead the members of the teams productively and successfully.

CO5: Be empathetic towards colleagues, clients; resilient to the professional challenges and manage stress in the professional and personal contexts.

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Text Books And Reference Books:
  1. Soft Skills and Employability Skills. Cambridge University Press, 2018.
  2. The Importance of Soft Skills in Engineering Education.Switzerland: Springer, 2022.
Essential Reading / Recommended Reading
  1. Professional English and Soft Skills. Anmol Publication Pvt Ltd, 2013.
  2. Personality Development and Soft Skills: Preparing for Tomorrow. I.K.International publishing house pvt ltd., 2018
Evaluation Pattern

 

 

CIAs + A

ESE

Total

 

CIA1

Quiz/Test/Assignment/Oral Talk

Conducted

50

50 

100

 

CIA2

Mid Semester Examination (MSE)

Condensed

25

25

50

 

CIA3

Paper/Article/Mini/Project/Presentation

BTGE634 - GERMAN LANGUAGE (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description

This beginner German course introduces pronunciation, grammar basics, and present tense sentence formation. Students build vocabulary for daily interactions and explore German culture and other German-speaking countries.

Course Objectives:

1.To make the students to learn the basics of German Language

2.Enable them with basic reading and writing skills.

 3. To make simple conversations in German Language

Learning Outcome

CO1: To make the students to learn the basics of German Language

CO2: Enable them with basic reading and writing skills

CO3: To make simple conversations in German Language

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Text Books And Reference Books:

Netzwerk A1 Kursbuch

Essential Reading / Recommended Reading

Netzwerk A1 Arbeitsbuch

 
Evaluation Pattern

 CIA-1 (out of 10), 

CIA-2 (out of 25) 

CIA-3 (out of 10)

Attendance 5 Marks

ESE    (out of 50)

BTGE635 - INTELLECTUAL PROPERTY RIGHTS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Innovation is crucial to us and plays significant role in the growth of economy. Government policies and legal framework offer protection to new inventions and creative works. This course intends to equip students to understand the policies and procedures they may have to rely on for the purposed of protecting their inventions or creative works during the course of their study or employment.

The course consists of five units. Theories behind the protection of intellectual property and its role in promoting innovations for the progress of the society are the focus of first unit. Second unit deals with protection of inventions through patent regime in India touching upon the process of obtaining international patents. The central feature of getting patent is to establish new invention through evidence. This is done through maintaining experimental/lab records and other necessary documents. The process of creating and maintain documentary evidence is dealt in Unit 3. Computers have become an integral part of human life. Till 1980, computer related inventions were not given much importance and lying low but today they have assumed huge significance in our economy. Computer related inventions and their protection which requires special treatment under legal regimes are discussed in Unit 4. The last module deals with innovations in e- commerce environment.

 

Learning Outcome

CO1: Understand the meaning and importance of intellectual property rights as well as different categories of intellectual property.

CO2: Understand the meaning of patentable invention, the procedure for filing patent applications, rights of the patentee and the different rights of patentee.

CO3: Maintain research records in the patent process, the process of patent document searching and how to interact with patent agent or attorney.

CO4: Understand the issues related to patenting of software, digital rights management and database management system.

CO5: Understand the intellectual property issues in e- commerce, evidentiary value of electronic signature certificates, protection of websites and the protection of semiconductor integrated circuits.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Text Books And Reference Books:

1. V.J. Taraporevala’s, Law of  Intellectual Property, Third Edition, 2019

2. Elizabeth Verkey, Intellectual Property, Eastern Book Company,  2015

Essential Reading / Recommended Reading

1. Martin Adelman, Cases and Materials on Patent Law, 2015

2. Avery N. Goldstein, Patent Law for Scientists and Engineers, Taylor & Francis (2005)

Evaluation Pattern

CIA 1

Assignment description: Class test to identify the different aspects of IP.

 

Assignment details: MCQs

 

CIA II (MSE)

Assessment Description: Closed book exam

Assignment Details: Mid semester examination five questions need to be answered.

 

CIA III

Assessment Description: Students would be assessed on the understanding of the different forms of IP, relevant theoretical justifications of intellectual property protection and the relevant IP statute from practitioner’s approach taught in the class and their ability to apply it correctly to the given problem and proposing solutions.

 

Assignment details: Students will be given a hypothetical legal problem in IP and will be required to write short essay, containing maximum 500 words. In the short essay, they have to answer the following questions

1. Identify the appropriate form of intellectual property.

2. Describe whether a pertinent theoretical justification meets or does not meet the respective form of IP.

3. Apply the correct principle of IP protection to the given case.

4. Evaluate the lacunae in the existing IP mechanism in comparison to international framework.

5. Devise a correct way of handling the lacunas.

ESE DETAILS -

Assessment Description : Closed book exam

Assignment Details: Five problem based questions need to be answered out of seven questions.

BTGE637 - PROFESSIONAL PSYCHOLOGY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course will enable the students to understand various developmental changes that takes place in human life and how people's thoughts, feelings, and behaviors are influenced by the social context consisting of the actual, imagined, or implied presence of others. The course introduces students to the existing theory and research in the past and contemporary social settings comprising viz, the intra-individual, inter-individual, and social factors that influence individual and group behavior.

Course Objectives:

  •   To provide students with frameworks from the psychology of human development
  •  To enhance their personal and professional development.
  • To examine their behavioral and relational styles, develop skills in managing work-life interface issues, and become more sensitive to cultural differences and diversity in groups

Learning Outcome

CO1: Understand the frameworks for the psychology of human development.

CO2: Show greater awareness of their thinking styles, relational styles, and behavioural styles of functioning.

CO3: Develop interpersonal awareness and skills, especially in the context of diversity and difference.

CO4: Develop preparatory skills toward effective work-life balance.

CO5: Develop an overall understanding of the psychosocial skills required in the professional world.

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Text Books And Reference Books:

Essential Readings:

Baron, R. A., &amp; Branscombe, N. R. (2006). Social psychology. Pearson Education India.

Nelson Goud and Abe Arkoff. (2005), Psychology and Personal Growth, Edition, Allyn and Bacon

Nelson Jones. (2006), Human Relationship Skills: Coaching and self-coaching, 4th edition,

Routledge,

 

Essential Reading / Recommended Reading

Recommended Reading:

Baron, R. A., (2012), Psychology, 5th edition. Pearson Education India.

Evaluation Pattern

CIA

CIA 1

CIA 2

CIA 3

Attendance

ESE

Marks

10

25

10

05

50

CIA 1: Individual Assignment

CIA 2: Mid-Semester Examinations (Written Examination)

 Pattern: Section A  5x02=10 marks

              Section B  4x05 = 20 marks

              Section C  2x10 =20 marks

CIA 3: Group Assignment

End Semester Examination (Written Examination)

Pattern: Section A  5x02 =10 marks

            Section B  4x05 = 20 marks

            Section C  2x10 =20 marks 

BTGE651 - DATA ANALYTICS THROUGH SPSS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Course Description
Data Analysis using SPSS is specially designed to provide the requisite knowledge and skills in Data Analytics. The course covers concepts of Basics about Statistics, Data handling, Data Visualization, Statistical analysis, etc. This course will build a base for advance data analysis skills.

Course objectives

After the completion of the course, you should be able to:


a. Understand basic concepts of statistics and computer software SPSS
b. Select appropriate Statistical test for particular type of data
c. Recognize and interpret the output from statistical analysis

Learning Outcome

CO1: Students will understand the concepts involved for analyzing Business data

CO2: Students will be able to understand how to use software like SPSS to analyse data

CO3: Students will be able to appreciate the use of Data Analytics for business decision making

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Text Books And Reference Books:

 

1.      Andy field, “Discovering Statistics Using SPSS”, SAGE Publications, Second Edition, 2006.

 

Essential Reading / Recommended Reading

 

1.      Darren George|Paul Mallery, “SPSS for Windows Step by Step”, Pearson, Tenth Edition, 2012.

 

Evaluation Pattern

 

CIA-1

Unit 1,2,3,4

Mid Term

Unit1,2,3,4,5

CIA-3

Unit 6

 

BTGE652 - DIGITAL MARKETING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

 

 

Course Description:

 

Developing a successful digital marketing strategy and implementation is both an art and science. It involves in-depth knowledge of dynamics of new media (Social Media, Mobile) and utilizing the right resources and marketing skills to design and launch successful customer engagement campaigns. Digital Marketing course has been designed to help students to understand both functional and management roles required to plan and execute effective Digital Marketing campaigns. The course also helps students gain an insight how to plan and implement Digital Marketing initiatives

 

Course Objectives:

 

·         To apply the basics of digital marketing in the contemporary business scenario

 

·         To utilize google ads for promotional activities

 

·         To contrast various social media marketing platforms and activities 

 

·         To analyse the search engine optimization and search engine marketing strategies

To explain analytics pertaining to digital marketing initiatives

 

Learning Outcome

CO1: Plan a digital marketing campaign as per client requirements

CO2: Apply google ads in digital campaigns

CO3: Analyse the appropriateness of social media marketing strategies with respect to campaign objectives

CO4: Examine the search engine optimization efforts

CO5: Appraise the digital marketing analytics related to the project

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Text Books And Reference Books:

1. Seema Gupta. (2020). Digital Marketing (2nd  Ed). Tata Mc Graw Hill

Essential Reading / Recommended Reading

 

1.      Kerpen, D., Berk, R., Greenbaum, M. (2019). Likeable social media, Third Edition: How To Delight Your Customers, Create an Irresistible Brand, & Be Generally Amazing On All Social Networks That Matter. United Kingdom: McGraw-Hill Education.

 

2.      Dr. Antony Puthussery (2020). Digital Marketing: An Overview. Notion Press.

 

3.      Herman, J., Butow, E., Allton, M., Liu, S., Robinson, A. (2020). Ultimate Guide to Social Media Marketing. United States: Entrepreneur Press.

 

4.      Marshall, P., Rhodes, M., Todd, B. (2020). Ultimate Guide to Google Ads. United States: Entrepreneur Press.

 

Evaluation Pattern

 

CIA 1 – Digital Marketing Plan – 20 Marks

 

CIA 2 – Google Ads – 10 Marks

 

CIA 3 – Social Media Marketing – 25 Marks

 

CIA 4 – Web Analysis (SEO) – 20 Marks

 

CIA 5 – Analytics – 20 Marks

 

Attendance – 5 Marks

 

CIA – Total Marks – 100 Converted to 50

 

ETE

 

Viva Voce – 50 Marks

 

Report – 50 Marks

 

ETE – 100 Marks – Converted to 50

Overall Marks – CIA + ESE = 100

 

BTGE653 - DIGITAL WRITING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

The course will develop the knowledge and skills required to write content for digital media. Students will learn how to craft writing for different areas of the media by focusing on genres such as profiles, informative pieces, articles and content pieces. Students will work on pitching and marketing ideas, discuss topics such as timelines, word counts and deadlines. The course will also examine the principles of reporting and the legal and ethical issues associated with content writing

 

The course intends to provide students with an in-depth understanding of the nature of digital content. The course will acquaint students with the techniques of writing simple but polished digital content. The subject will develop creativity in writing and imaginative approaches to digital content writing. The paper will help students understand the mechanics of content writing

Learning Outcome

CO1: Students will learn how to write digital content for websites, blogs, and general social networking sites

CO2: Students will learn the importance of using hyperlinks to information sources when writing an article

CO3: Students will be able to differentiate between original and plagiarized content and develop mechanisms to avoid plagiarism

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Text Books And Reference Books:
  1. Peter Clark, Roy. How to Write Short: Word Craft for Fast Times. Little Brown and Company. ISBN 0316204323.

 

  1. Carroll, Brian. Writing and Editing for Digital Media, 1st edition. ISBN 978-0-415-99201-5. Routledge.

 

  1. Writing New Media Theory and Applications for Expanding the Teaching of Composition; Anne Frances Wysocki, Johndan Johnson-Eilola, Cynthia L. Selfe, & Geoffrey Sirc Publication Year: 2004.
Essential Reading / Recommended Reading
  1. Online Journalism: Reporting, Writing and Editing for New Media, Richard Craig.

 

  1. Broadcast News Handbook: Writing, Reporting & Producing in a Converging Media World 2007, Third Edition, C.A. Tuggle,  Forrest Carr and Suzanne Huffman
Evaluation Pattern

Introduction - 10

Content - 10

Structure - 10

Clarity- 10

Conclusion -10

BTGE654 - PHOTOGRAPHY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

1.      To provide proficiency in handling tools related to the photographic Images

2.      To explore the role of the photographer in the architectural community.

3.      To provide skills and knowledge in the application of various types of lights on the photography.

 

4.      To develop solutions for visual art related problems and to understand the concept of visual-based communication.

Learning Outcome

CO1: Ability to develop photography skill to express the art of communication

CO2: Improvising professional skills in the realm of documentation and photography art direction

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Text Books And Reference Books:

1.      Schaeffer J. P. (1998) The Ansel Adams guide: Basic techniques of photography, Boston: Little Brown and Company.

2.      Horenstein, H. (1977) Beyond Basic Photography: A Technical Manual, Boston: Little Brown and Company.

 

3.      Craven, G. M.(1990) Object and Image: An Introduction to Photography, New Jersey: Prentice-Hall, Englewood Cliffs.

Essential Reading / Recommended Reading

1.      Peterson, B. (2016) Understanding Exposure, Fourth Edition, Random House USA Inc.

2.      DK (2015) Digital Photography Complete Course, DK; Reissue edition.

3.      Northrup T. & Northrup C. (2012) Tony Northrup's DSLR Book: How to Create Stunning Digital Photography, (2nd edition) Mason Press.

4.      Hunter, F., Biver S. & Fuqua P. (2015) Light Science & Magic: An Introduction to Photographic Lighting, Routledge, ISBN-10: 0415719402.

Peterson B. (2017) Understanding Colour in Photography: Using Colour, Composition, and Exposure to Create Vivid Photos, Random House US, ISBN-10 : 9780770433116 

Evaluation Pattern

The assessment pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). The weightage of marks for subjects having both CIA marks, as well as ESE marks, have a ratio of 50:50.

CONTINUOUS INTERNAL ASSESSMENT (CIA): 50%

Continuous Internal Assessment for this course  shall be conducted by the respective faculty in the form of different types of assignments. Students need to complete the assignments within the stipulated time for the award of marks.
A minimum of 50% in the CIA is required to appear for the End Semester Examination (ESE) of the course
Total CIA - 50 Marks

END SEMESTER EXAMINATION (ESE): 50%

Eligibility to appear for ESE is a score of a minimum of 50% in the CIA.
The course shall have a Viva Voce evaluated by an external examiner and internal examiner of the portfolio presentation.
Total ESE - 50 Marks

PASS CRITERIA

A student shall pass the course only on a minimum aggregate score (CIA+ESE) of 45% and a minimum CIA Score of 50% and an ESE score of 40%

BTGE655 - ACTING COURSE (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

In this course the students are introduced different aspects of acting such as creating a character,

analyzing a script, working on voice and developing body language. At the end of the course the learners

will perform a monologue.

The course aims at the study and practice of Classical Acting. The development of individual imagination,

insight, skills and disciplines in the presentation of drama to audience.

Learning Outcome

CO1: To understand different aspects of acting and to perform a monologue

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Text Books And Reference Books:

Stanislavsky, Constantine. “An Actor prepares.”

Essential Reading / Recommended Reading

Stanislavsky, Constantine. “An Actor prepares.”

Evaluation Pattern

The assessment of the students is happening throughout the course and will be completed with the final monologue performance. 

 

The assignments need to be submitted via Google Classroom by the given deadlines. 

Actor’s notebooks need to follow the given requirements. 

Monologues will be performed live.

 

Completing all the given assignments throughout the course –20 marks

Submission of actor’s notebook – 20 marks

Final monologue performance – 60 marks 

BTGE656 - CREATIVITY AND INNOVATION (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

To equip students with skill and aptitude for creativity and innovation through

  1. Analyzing Problems:

To stimulate curiosity in students to identify the areas of gaps and opportunities and solutions that can be provided

  1. Creating Ideas:

To stimulate creativity in students to come up with ideas for the areas of gaps and opportunities

  1. To understand the creative process: Smart storming 

  2. Engineering Solutions: To understand Proof of Concept, Minimum Viable Proposition, and the Rapid Iteration Process

Learning Outcome

CO-1: Develop an aptitude for creative thinking and problem solving in the areas that drive their interest.

CO-2: Understand the benefits of team work and collaborative thinking

CO-3: Understand the three keys aspects of the creative process viz. ACES

CO-4: Develop projects to understand the various principles and elements of creativity and innovation

CO-5: Apply the concepts of IPR to verify the projects which may be patentable, design and copyright protected

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Text Books And Reference Books:

 Activity Based Teaching. No text books and reference books

Essential Reading / Recommended Reading

 Activity Based Teaching. No text books and reference books

Evaluation Pattern

This course consists of Overall Cia for 100 marks. No End Semester Examination for this course.

BTGE657 - PAINTING AND SKETCHING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

The course will develop the skills required to represent elements of nature and surrounding objects. Students will learn how to use the appropriate medium for representing their thought process. The course will examine the representation skills through exercises on sketching and rendering.

Learning Outcome

CO3: Students will learn how to represent their ideas and thought processes diagrammatically through sketching and rendering.

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Text Books And Reference Books:

Drawing : (Ching, Francis D K)

Rendering With Pen and Ink / (Gill Robet W)
Essential Reading / Recommended Reading

milind mulick watercolor

sketchbook by milind mulick

 

Evaluation Pattern

The following courses do not have ESE. It has only Overall CIA (out of 100). This will be treated as the final ESE mark. Total mark = 100.

BTGE658 - DESIGN THINKING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Course Description:

Throughout the course students will work on three different challenges; one focused on product design, one focused on service design and one focused on systems or business design. By starting with a very tangible challenge around product design, students will be able to hone their skills in the process before moving into more complex challenges around business and systems level design.

 

The course will be teamwork-oriented, but students will also complete readings and independent activities that support the group work and ensure individual depth of knowledge.

 

Course objectives:  

Expose students to the design process as a tool for innovation.

Develop students’ professional skills in client management and communication.

Demonstrate the value of developing a local network and assist students in making lasting connections with the business community.

Students develop a portfolio of work to set them apart in the job market.

Provide an authentic opportunity for students to develop teamwork and leadership skills.

Learning Outcome

CO1: Design Process 1. Students develop a strong understanding of the Design Process and how it can be applied in a variety of business settings 2. Students learn to research and understand the unique needs of a company around specific challenges 3. Students learn to build empathy for target audiences from different cultures 4. Students learn to develop and test innovative ideas through a rapid iteration cycle 5. Students learn how to create physical prototypes / a visual representation of an idea 6. Students develop the willingness to take a risk and the ability to deal with failure

CO2: Professionalism 1. Students develop professional interpersonal and presentation skills 2. Students develop professional communication skills such as interviewing and crafting professional emails 3. Students learn to take ownership of the quality of their work and final products 4. Students understand their duty to maintain ethical standards in product and strategy design 5. Students understand the value of and have tools to develop a strong network

CO3: Leadership and teamwork 1. Students develop self awareness of personal leadership style and how to effectively work as a member of a team 2. Students collaborate on a variety of projects 3. Students develop communication skills necessary to facilitate high performance team formation and maintenance (e.g., leveraging the skills and abilities of all team members, valuing cross-disciplinary/cultural contributions, engaging in difficult conversations and resolving conflict)

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Text Books And Reference Books:

Essential References:

1. Design Your Thinking: The Mindsets, Toolsets and Skill Sets for Creative Problem-solving Hardcover – 23 December 2020, by Pavan Soni.

2. The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods, by Michael Lewrick, Patrick Link, Larry Leifer.

3. Design Thinking: Understanding How Designers Think and Work, by Nigel Cross, BERG, Oxford, Newyork.

Essential Reading / Recommended Reading

Recommended References:

1. HBR's 10 Must Reads on Design Thinking (with featured article "Design Thinking" By Tim Brown) Paperback – 10 August 2020, by  Publisher ‏ : ‎ Harvard Business Review Press (10 August 2020); Penguin Random House.

2. Change by Design, Revised and Updated: How Design Thinking Transforms Organizations and Inspires Innovation,  by Tim Brown. Publisher HarperCollins, 2019; ISBN 0062856715, 9780062856715.

3. This is Service Design Thinking: Basics, Tools, Cases, by Marc Stickdorn, Jakob Schneider, Publisher BIS Publ., 2012; ISBN 906369279X, 9789063692797

Evaluation Pattern

Evaluation Pattern:

This courses do not have CIA-1-2-3 and ESE. It has only Overall CIA (out of 100). This will be treated as the final ESE.

 

The following case studies will be given for the evaluation of overall CIA.

 

1. Case Studies focused on product design.

2. Case Studies focused on service design.

3. Case Studies focused on systems or business design.

BTGE659 - FOUNDATIONS OF AVIATION (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

A student successfully completing this course will be able to:

Explain basic terms and concepts in air transportation, including commercial, military, and general aviation; air traffic control. Identify on the parts of an aircraft, classify the aircraft types and Construct models of an Aircraft. Understand the types of Aero engines and analyse the impact of meteorology in Aviation.

Learning Outcome

CO1: Interpret the fundamental principles of flight based on theorems and parts of the Aircraft

CO2: Summarize the types of aircrafts and illustrate modelling of an Aircraft

CO3: Identify the types of Aero engines and Make use of Meteorology

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Text Books And Reference Books:

Text Books:

• Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

• Introduction to Aerospace Engineering: Basic Principles of Flight, Ethirajan Rathakrishnan, Wiley Press, 2021.

 

 

Essential Reading / Recommended Reading

.

Evaluation Pattern

This Course do not have CIA 1/2/3. It has Overall CIA(out of 100 and will be Converted to 50) and ESE ( out of 100 and will be converted to 50). Total Marks=100.

MAHO631DMP - INTERNET OF THINGS FOR INDUSTRY AUTOMATION (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course focuses on the latest microcontrollers with application development, product design and prototyping. Ideally suited for engineering students and graduates with a basic understanding of electronics and microprocessors. The Internet of Things (IOT) is the next wave, world is going to witness. Today we live in an era of connected devices (mobile phones, computers etc.), the future is of connected things (Eg: home appliances, vehicles, lamp-posts, personal accessories, your pets, industrial equipments and everything which you use in day-to-day life). Internet of Things is a term given to the attempt of connecting objects to the internet and also to each other - allowing people and objects themselves to analyze data from various sources in real-time and take necessary actions in an intelligent fashion

Learning Outcome

CO-1: Will be able to explain the definition and significance of the Internet of Things. (PO1, PO2, L1 & L2)

CO-2: Differentiate between the levels of the IoT stack and be familiar with the key technologies and protocols employed at each layer of the stack (PO1, PO2, PO3, L2, L3 )

CO-3: apply the knowledge and skills acquired during the course to build and test a complete, working IoT system involving prototyping, programming and data analysis (PO1, PO2, PO3, L2, L3 )

CO-4: appreciate the role of big data, cloud computing and data analytics in a typical IoT system (PO1, PO2, PO3, L2, L3 )

CO-5: Identify how IoT differs from traditional data collection systems (PO1, PO2, PO3, L2, L3 )

Unit-1
Teaching Hours:9
Introduction to IoT
 

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs.

Unit-1
Teaching Hours:9
Introduction to IoT
 

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs.

Unit-1
Teaching Hours:9
Introduction to IoT
 

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs.

Unit-2
Teaching Hours:9
IoT & M2M
 

 

Machine to Machine, Difference between IoT and M2M, Softwaredefine Network.

Unit-2
Teaching Hours:9
IoT & M2M
 

 

Machine to Machine, Difference between IoT and M2M, Softwaredefine Network.

Unit-2
Teaching Hours:9
IoT & M2M
 

 

Machine to Machine, Difference between IoT and M2M, Softwaredefine Network.

Unit-3
Teaching Hours:9
Network & Communication aspects :
 

 

Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination

Unit-3
Teaching Hours:9
Network & Communication aspects :
 

 

Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination

Unit-3
Teaching Hours:9
Network & Communication aspects :
 

 

Wireless medium access issues, MAC protocol survey, Surveyrouting protocols, Sensor deployment & Node discovery, Dataaggregation & dissemination

Unit-4
Teaching Hours:9
Challenges in IoT
 

 

Design challenges, Development challenges, Security challenges,Other challenges.

Unit-4
Teaching Hours:9
Challenges in IoT
 

 

Design challenges, Development challenges, Security challenges,Other challenges.

Unit-4
Teaching Hours:9
Challenges in IoT
 

 

Design challenges, Development challenges, Security challenges,Other challenges.

Unit-5
Teaching Hours:9
Domain specific applications of IoT
 

 

Home automation, Industry applications, Surveillance applications,Other IoT applications

Unit-5
Teaching Hours:9
Domain specific applications of IoT
 

 

Home automation, Industry applications, Surveillance applications,Other IoT applications

Unit-5
Teaching Hours:9
Domain specific applications of IoT
 

 

Home automation, Industry applications, Surveillance applications,Other IoT applications

Text Books And Reference Books:

T1. Vijay Madisetti, Arshdeep Bahga, “Internet of Things: A Hands-On Approach”VPT; 1 edition (August 9, 2014).

 

T2. Waltenegus Dargie,Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"  Wiley (2010).

Essential Reading / Recommended Reading

R1. David Etter ,“IOT (Internet of Things) Programming: A Simple and Fast Way of Learning IOT”, Orient Blackswan Private Limited - New Delhi; First edition (2015)

R2.  RMD Sundaram Shriram K Vasudevan, Abhishek S Nagarajan ,”Internet of Things”, Wiley (2019). 

Evaluation Pattern

Total Hrs in a semester

CIA I -Evaluated out of (20/30)

CIA I cnverted to (10)

CIA II - Evaluated out of (50)

CIA II cnverted to ( 25/ ) 

Mention Whether CIA II is Centralized exam or department level Assessment

CIA III - Evaluated out of (20/30)

CIA III cnverted to (10)

Total CIA

Total CIA is scaled down to 20/45/55/65

If CIA is final Submission -Evaluated out of

Is there CIA minimum, if yes give the minimum CIA

Att. Marks

ESE Evaluated out of (50/100)

ESE converted to (50/100)

75

20

10

10

25

Centralized

20

10

90

65

50

20

5

100

30

 

MICSAI634 - INTRODUCTION TO MACHINE LEARNING (2022 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course Description: This course is designed to provide a comprehensive understanding of machine learning concepts, algorithms, and applications. The course emphasizes hands-on experience through practical implementation using python.

Course objectives:  

1.     To identify the scope and necessity of Data Mining & Warehousing for the society.

2.     To understand students to the basic concepts and techniques of Machine Learning.

3.     To learn and understand the concept of neural networks.

4.     To understand classification and clustering techniques.

5.     To understand evolutionary models.

Learning Outcome

1: Understand Data Mining & Warehousing concepts

2: Understand and Distinguish between types of learning

3: Build neural networks using algorithms

4: Make use of applications with clustering and classification techniques

5: Understand evolutionary models

Unit-1
Teaching Hours:12
DATA MINING AND DATA WAREHOUSING
 

Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.

 

Experiment 1: Implementation of Arrays using Numpy.

Experiment 2: Data Pre-processing like missing values, scaling etc.

Unit-1
Teaching Hours:12
DATA MINING AND DATA WAREHOUSING
 

Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.

 

Experiment 1: Implementation of Arrays using Numpy.

Experiment 2: Data Pre-processing like missing values, scaling etc.

Unit-1
Teaching Hours:12
DATA MINING AND DATA WAREHOUSING
 

Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.

 

Experiment 1: Implementation of Arrays using Numpy.

Experiment 2: Data Pre-processing like missing values, scaling etc.

Unit-1
Teaching Hours:12
DATA MINING AND DATA WAREHOUSING
 

Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.

 

Experiment 1: Implementation of Arrays using Numpy.

Experiment 2: Data Pre-processing like missing values, scaling etc.

Unit-1
Teaching Hours:12
DATA MINING AND DATA WAREHOUSING
 

Introduction - Steps in KDD - System Architecture - Types of data - Data mining functionalities - Classification of data mining systems - Integration of a data mining system with a data warehouse - Issues - Data Preprocessing - Data Mining Application - Data warehousing components - Building a data warehouse - Multidimensional Data Model - OLAP Vs OLTP.

 

Experiment 1: Implementation of Arrays using Numpy.

Experiment 2: Data Pre-processing like missing values, scaling etc.

Unit-2
Teaching Hours:12
INTRODUCTION TO MACHINE LEARNING
 

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression.

Experiment 3: Implementation of Data visualization using Matplotlib

Experiment 4: Implementation of Data visualization using SKlearn

Unit-2
Teaching Hours:12
INTRODUCTION TO MACHINE LEARNING
 

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression.

Experiment 3: Implementation of Data visualization using Matplotlib

Experiment 4: Implementation of Data visualization using SKlearn

Unit-2
Teaching Hours:12
INTRODUCTION TO MACHINE LEARNING
 

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression.

Experiment 3: Implementation of Data visualization using Matplotlib

Experiment 4: Implementation of Data visualization using SKlearn

Unit-2
Teaching Hours:12
INTRODUCTION TO MACHINE LEARNING
 

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression.

Experiment 3: Implementation of Data visualization using Matplotlib

Experiment 4: Implementation of Data visualization using SKlearn

Unit-2
Teaching Hours:12
INTRODUCTION TO MACHINE LEARNING
 

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants - Perceptron - Linear Separability - Linear Regression.

Experiment 3: Implementation of Data visualization using Matplotlib

Experiment 4: Implementation of Data visualization using SKlearn

Unit-3
Teaching Hours:12
Neural Networks
 

Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.

 

Experiment 5: Implementation of Data Analysis using Python

Experiment 6: Implementation of Arrays using Pandas

Unit-3
Teaching Hours:12
Neural Networks
 

Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.

 

Experiment 5: Implementation of Data Analysis using Python

Experiment 6: Implementation of Arrays using Pandas

Unit-3
Teaching Hours:12
Neural Networks
 

Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.

 

Experiment 5: Implementation of Data Analysis using Python

Experiment 6: Implementation of Arrays using Pandas

Unit-3
Teaching Hours:12
Neural Networks
 

Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.

 

Experiment 5: Implementation of Data Analysis using Python

Experiment 6: Implementation of Arrays using Pandas

Unit-3
Teaching Hours:12
Neural Networks
 

Neural Networks - threshold logic units - linear machines - networks of threshold learning units - Training of feed forward networks by back propagations - neural networks vs. knowledge - based systems.

 

Experiment 5: Implementation of Data Analysis using Python

Experiment 6: Implementation of Arrays using Pandas

Unit-4
Teaching Hours:12
Classification and Clustering Techniques
 

Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.

 

Experiment 7: Implementation of K-Means Algorithm.

Experiment 8: Implementation of Naïve Bayes Algorithm.

Unit-4
Teaching Hours:12
Classification and Clustering Techniques
 

Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.

 

Experiment 7: Implementation of K-Means Algorithm.

Experiment 8: Implementation of Naïve Bayes Algorithm.

Unit-4
Teaching Hours:12
Classification and Clustering Techniques
 

Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.

 

Experiment 7: Implementation of K-Means Algorithm.

Experiment 8: Implementation of Naïve Bayes Algorithm.

Unit-4
Teaching Hours:12
Classification and Clustering Techniques
 

Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.

 

Experiment 7: Implementation of K-Means Algorithm.

Experiment 8: Implementation of Naïve Bayes Algorithm.

Unit-4
Teaching Hours:12
Classification and Clustering Techniques
 

Support vector Machine - Decision Tree - Naïve Bayes - Random Forest – Density - Based Clustering Methods Hierarchical Based clustering methods - Partitioning methods - Grid based methods - K means clustering - pattern based with deep learning.

 

Experiment 7: Implementation of K-Means Algorithm.

Experiment 8: Implementation of Naïve Bayes Algorithm.

Unit-5
Teaching Hours:12
Evolutionary Models
 

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process

 

 

Experiment 9:  Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm

Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm

Unit-5
Teaching Hours:12
Evolutionary Models
 

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process

 

 

Experiment 9:  Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm

Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm

Unit-5
Teaching Hours:12
Evolutionary Models
 

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process

 

 

Experiment 9:  Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm

Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm

Unit-5
Teaching Hours:12
Evolutionary Models
 

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process

 

 

Experiment 9:  Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm

Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm

Unit-5
Teaching Hours:12
Evolutionary Models
 

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms - Reinforcement Learning - Overview -Getting Lost Example - Markov Decision Process

 

 

Experiment 9:  Implementation of Population Initialization, selection, and Fitness Evaluation in Genetic Algorithm

Experiment 10: Implementation of Cross-over and Mutation in Genetic Algorithm

Text Books And Reference Books:

R1: Ethem Alpaydin, “Introduction to Machine Learning”, MIT Press, 3rd Edition, 2014.

R2: Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, “Learning from Data”, AML Book Publishers, 2012.

R3: Andreas, C. Muller & Sarah Guido, “Introduction to Machine Learning with Python A guide for data scientists”.

R4: Peter Flach, “Machine Learning: The Art and Science of Algorithms that Make Sense of Data”, 1st Edition, Cambridge University Press, 2012.

R5: Tom M Mitchell, “Machine Learning”, 1st Edition, McGraw Hill Education, 2013.

Essential Reading / Recommended Reading

W1: Machine Learning with Python: https://www.coursera.org/learn/machine-learning-with-

python

W2: Name of the Course: Machine Learning A-Z: AI, Python &amp; R + ChatGPT Prize

[2024] https://www.udemy.com/share/101Wci/

W3: Udemy Course Python Programming: A Practical Approach by Dr. Xavier Chelladurai.:

https://www.udemy.com/course/python-programming-2021-full-coverage-a-practical-

approach/?couponCode=1BF4620C490F86413A5E

W4: Name of the Course: Python Programming Full Coverage: A Practical Approach

Python Programming: A Practical Approach | Udemy

Evaluation Pattern

CIA 1- 20 Maks

CIA-2 - 50 Marks

CIA-3 - 20 Marks

End Sem Exam: 100 Marks

Scaled: CIA-70 Marks+ ESE 30 Marks

 

RM631P - DIGITAL MANUFACTURING (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

The objective is to transform product ideas into viable products: hand sketching; fundamental engineering design principles and procedures; design, analysis and optimization of parts using CAD, CAM, CAE technologies; implementation of additive manufacturing; and reverse engineering complete processes.

Learning Outcome

CO1: Identify different axes, machine zero, home position, systems and controls CNC machines. {L1}

CO2: Apply ideas of product design using 2D sketches, 3D modelling, parametric design and assembly modelling. {L2}

CO3: Understand general stages of the process, solid and FEA models, materials definition, loading, post-processing, results and verifications. {L2}

CO4: Interface software application for auto part programming. {L2}

CO5: Understand digitizing methods and main technologies: applications and selection of reverse engineering systems. {L2}

Unit-1
Teaching Hours:9
Fundamentals of process planning and CNC systems
 

Introduction to Computer Numerical Control: CNC Systems – An Overview of Fundamental aspects of machine control, Different types of CNC machines – Advantages and disadvantages of CNC machines. Process planning, Structure of process plan, factors influencing process plan, Sequence of operation of process, CAM, NC, CNC and DNC, selection criteria for CNC machines, adaptive control

Unit-2
Teaching Hours:9
Additive Manufacturing processes ? Advanced materials
 

Electronic Materials, Bioprinting, Food Printing

Unit-2
Teaching Hours:9
Additive Manufacturing processes-Engineering polymers, metals, ceramics:
 

Stereolithography, Selective Laser Sintering, Fused Deposition Modeling, Polyjet, LENS, Layered object manufacturing

 

 

 

Unit-3
Teaching Hours:9
2D Cutting and Programmable Assembly
 

2D Cutting: Laser Cutting, Plasma Cutting, Waterjet

Programmable Assembly: Digital Assembly, Digital Bending

 

Unit-3
Teaching Hours:9
Computer Aided Design (CAD)
 

3D modelling, Parametric design, Assembly modelling, Render the appearance of a product, CAD and additive manufacturing

Unit-4
Teaching Hours:9
Computer Aided Engineering (CAE)
 

Finite Element Analysis (FEA) to validate functional performance: general stages of the process, solid and FEA models, materials definition, loading (loads, displacements constraints…), post-processing, results and verifications. Topology optimization in additive manufacturing.

Unit-5
Teaching Hours:9
Reverse engineering General methodology
 

Point clouds, meshes (.stl), NURBS surface models and parametric CAD models. Digitizing methods and main technologies: applications and selection of reverse engineering systems. Hardware and software involved. Reverse engineering and additive manufacturing.

Text Books And Reference Books:

T1. K. T. Ulrich and S. D. Eppinger, Product Design and Development, 6th Ed., McGraw-Hill Education, 2015. ISBN-13: 978-0-078-02906-6

T2. Parametric Technology Corporation (PTC), Simulation using Creo Parametric user guides.

T3. Raja and K. J. Fernandes (eds.), Reverse Engineering. An Industrial Perspective, 1st Ed., Springer-Verlag London, 2008. ISBN-13: 978-1-849-96660-3

T4. N. Hopkinson, R. J. M. Hague and P. M. Dickens (eds.), Rapid Manufacturing: An Industrial Revolution for the Digital Age, 1st Ed., John Wiley & Sons, 2005. ISBN-13: 978-0-470-01613-8

T5. P.N.Rao, N.K.Tiwari, T. Kundra, Computer Aided Manufacturing, Tata McGraw Hill, New Delhi,2014.

T6. O.P.Khanna, Industrial Engineering, Dhanpat rai, New Delhi, 2012.

Essential Reading / Recommended Reading

R1. M. P. Groover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson education, Fourth Edition, 2016.

R2. S.K.Vajpayee, Principles of CIM, PHI, 1995.

R3. Z. Zhou, S. Xie, and D. Chen, Fundamentals of Digital Manufacturing Science, 1st Ed., Springer-Verlag London, 2012. ISBN-13: 978-1-447-12714-7

R4.  Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer-Verlag Boston, 2010. ISBN-13: 978-1-441-91119-3

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

 

Component

Assessed for

Minimum marks

to pass

Maximum

marks

1

Theory CIA

30

-

30

2

Theory ESE

30

12

30

3

Practical CIA

35

14

35

4

Attendance

05

-

05

4

Aggregate

100

40

100

 

DETAIL OF MARK FOR COURSES WITH THOERY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

     Minimum marks required to pass in practical component is 40%.

     Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course.

     A minimum of 40 % required to pass in ESE -Theory component of a course.

     Overall 40 % aggregate marks in Theory & practical component, is required to pass a course.

     There is no minimum pass marks for the Theory - CIA component.

     Less than 40% in practical component is refereed as FAIL.

     Less than 40% in Theory ESE is declared as fail in the theory component.

     Students who failed in theory ESE have to attend only theory ESE to pass in the course

RM632P - ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

The course should enable the student

1. To understand the representation of AI techniques, agents and agent environments.

2. To study about applications of AI and ML techniques

3. To know the knowledge representation and learning

4. To enable the students to apply these techniques in application which involve perception, reasoning and learning

5. To apply the working of Neural Network techniques

Learning Outcome

CO1: Explain the fundamental knowledge of AI and Intelligent agents (L2)

CO2: Describe the various learning models with real-time scenarios (L2)

CO3: Construct various learning models using python (L3)

CO4: Experiment with the working of several neural networks with case studies (L3

CO5: Examine the applications of AI in various sectors and its research aspects (L4)

Unit-1
Teaching Hours:9
INTRODUCTION TO AI
 

Definition of AI, Types of environment, Types of agents, Performance measure, Environment, Actuators, Sensors, AI and society – Applications and Limitations

Unit-2
Teaching Hours:9
INTRODUCTION TO ML
 

Basic definitions, types of learning, hypothesis space and inductive bias, evaluation, cross-validation, Case studies using ML in real world

Unit-3
Teaching Hours:9
SUPERVISED AND UNSUPERVISED LEARNING
 

Linear Regression – Logistic Regression, SVM Classifier, K-means clustering - KNN (k-nearest neighbors) – Performance Metrics and Errors

Unit-4
Teaching Hours:9
INTRODUCTION TO NEURAL NETWORKS
 

Biological Neural Networks - Artificial Neural Networks – Introduction to Convolutional Neural Networks - Convolution operations – Pooling - Image classification - Modern CNN architectures

Unit-5
Teaching Hours:9
CASE STUDIES
 

Case Study Discussions on Autonomous driving, Computer Vision in Industrial Automation - AI in Manufacturing – AI in Smart cities

Text Books And Reference Books:

T1. Martin C. Brown,”Python: The Complete Reference”, McGraw Hill Education; Forth edition (20 March 2018)

T2. Wolfgang Ertel. “Introduction to Artificial Intelligence”, Springer; 2nd edition (2017)

T3. Bharath Ramsundar, Reza Bosagh Zadeh. “TensorFlow for Deep Learning”, O'Reilly Media, Inc., March 2018.

T4. EthemAlpaydin, ―Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.

Essential Reading / Recommended Reading

R1. Nils J. Nilsson, ―Artificial Intelligence: A new Synthesis‖, Harcourt Asia Pvt. Ltd., 2000.

R2. Elaine Rich and Kevin Knight, ―Artificial Intelligence‖, 2nd Edition, Tata McGraw-Hill, 2003.

R3. George F. Luger, ―Artificial Intelligence-Structures And Strategies For Complex Problem Solving‖, Pearson Education / PHI, 2002.

R4. Janakiraman, K. Sarukesi,  ̳Foundations of Artificial Intelligence and Expert Systems‘, Macmillan Series in Computer Science.

R5. W. Patterson,  ̳Introduction to Artificial Intelligence and Expert Systems‘, Prentice Hall of India, 2003

Evaluation Pattern

COURSES WITH THEORY AND PRACTICAL

THEORY

PRACTICAL

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

Component

Assessed for

Scaled down to

Min.

marks

Max. marks

1

CIA-1

20

10

-

10

Overall CIA

50

35

14

35

2

CIA-2

50

10

-

10

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

Attendance

NA

NA

-

-

5

ESE

100

30

12

30

ESE

NA

NA

-

-

 

 

TOTAL

65

-

65

TOTAL

 

35

14

35

RM633 - FIELD AND SERVICE ROBOTS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

At the end of the course, the students would be able

     To study the various parts of robots and fields of robotics.

     To study about the localization, planning and navigation.

     To study the control of robots for some specific applications.

 

     To study about the humanoid robots.

Learning Outcome

CO1: Explain the basic concepts of working of robot (L2)

CO2: Analyze the function of sensors in the robot (L4)

CO3: Apply of robot programming methods for robotic applications. (L3)

CO4: Explain use of robots in different applications (L2)

CO5: Describe about the humanoid robots. (L2)

Unit-1
Teaching Hours:9
INTRODUCTION:
 

History of service robotics – Present status and future trends – Need for service robots – applications examples and Specifications of service and field Robots. Non-conventional Industrial robots.

Unit-2
Teaching Hours:9
LOCALIZATION:
 

LOCALIZATION: Challenges of Localization- Map Representation- Probabilistic Map based Localization-Monte carlo localization- Landmark based navigation-Globally unique localization- Positioning beacon systems- Route based localization.

 

PLANNING AND NAVIGATION-Path planning overview- Road map path planning- Cell decomposition path planning-Potential field path planning-Obstacle avoidance - Case studies: tiered robot architectures.

Unit-3
Teaching Hours:9
FIELD ROBOTS
 

Ariel robots- Collision avoidance-Robots for agriculture, mining, exploration, underwater, civilian and military applications, nuclear applications, Space applications.

Unit-4
Teaching Hours:10
HUMANOIDS
 

Wheeled and legged, Legged locomotion and balance, Arm movement, Gaze and auditory orientation control, Facial expression, Hands and manipulation, Sound and speech generation, Motion capture/Learning from demonstration, Human activity recognition using vision, touch, sound, Vision, Tactile Sensing, Models of emotion and motivation. Performance, Interaction, Safety and robustness,

Applications, Case studies

Unit-5
Teaching Hours:8
Basic Introduction about Micro Robotics
 

Basic Introduction about Micro Robotics, Cognitive Robotics, Cloud Robotics, Medical Robotics, Swarm Robotics

Text Books And Reference Books:

T1. Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, Introduction to Autonomous Mobile Robots”, Bradford Company Scituate, USA, 2004

T2. Riadh Siaer, „The future of Humanoid Robots- Research and applications, Intech Publications, 2012.

 

T3. Kelly, Alonzo; Iagnemma, Karl; Howard, Andrew, "Field and Service Robotics ", Springer, 2011

Essential Reading / Recommended Reading

R1. Richard D Klafter, Thomas A Chmielewski, Michael Negin, Robotics Engineering – An Integrated Approach, Eastern Economy Edition, Prentice Hall of India P Ltd., 2006.

 

 

Evaluation Pattern

ASSESSMENT - ONLY FOR THEORY COURSE {without practical component}

     Continuous Internal Assessment {CIA} : 50% {50 marks out of 100 marks}

     End Semester Examination{ESE}         : 50% {50 marks out of 100 marks}

Components of the CIA

CIA I   :  Subject Assignments / Online Tests                      : 10 marks

CIA II  :   Mid Semester Examination {Theory}                    : 25 marks                  

CIAIII: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications                                                                                              : 10 marks

Attendance                                                                             : 05 marks

            Total                                                                           : 50 marks

Mid Semester Examination {MSE} : Theory Papers:

     The MSE is conducted for 50 marks of 2 hours duration.

     Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks

End Semester Examination {ESE}:

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year.

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

 

25 % - Complex level questions 

RM637 - SERVICE LEARNING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

1. To develop a habit of critical reflection for life-long learning in solving societal problems.

2. To work with a community and identify a specific need that can be addressed through Involvement and engineering practices.

Learning Outcome

CO1: Integrates the academic work with community service through student involvement. [L3] [PO1, PO2, PO3, PO4, PO12].

CO2: Develop and implement a project designed to respond to that identified community need. [L3] [PO1, PO2, PO3, PO4, PO12].

CO3: Create an awareness among the students as responsible citizen of the community/society. [L3] [PO1, PO2, PO3, PO4, PO12].

Unit-1
Teaching Hours:30
Service Learning
 

MODULE – I:   Solid waste Management  (Theory –6;  Field Work -24 )

 

Sources of solid wastes: Types and Sources of solid wastes. Need for solid waste management. Elements of integrated waste management and roles of stakeholders. Salient features of Indian legislations on management and handling of municipal solid wastes, plastics and fly ash.

Collection & segregation: Handling and segregation of wastes at source. Storage and collection of municipal solid wastes. Analysis of Collection systems. Need for transfer and transport. Transfer stations Optimizing waste allocation. Compatibility, storage, labelling wastes.

 

(OR)

 

MODULE– II:    Managing stagnant Ponds  (Theory –6;  Field Work -24)

 

Purification of stagnant ponds :Introduction to Microbiology : Microbial ecology and Growth kinetics; Types of microorganisms ; aerobic vs. anaerobic processes

Biological Unit Processes :Aerobic treatment; Suspended growth aerobic treatment

processes; Activated sludge process and its modifications; Attached growth aerobic processes; Tricking filters and Rotating biological contactors; Anaerobic treatment; suspended growth, attached growth, fluidized bed and sludge blanket systems; nitrification, denitrification; Phosphorus removal.

 

Sludge Treatment: Thickening; Digestion; Dewatering; Sludge drying; Composting

Natural Wastewater Treatment Systems: Ponds systems.

 

(OR)

 

MODULE – III:   Solar power (Theory – 6;  Field Work - 24)

 

Solar energy: Global and National scenarios, Form and characteristics of renewable energy sources, Solar radiation, its measurements and prediction, Solar thermal collectors, flat plate collectors, concentrating collectors, Basic theory of flat plate collectors, solar heating of buildings, solar still, solar water heaters, solar driers; conversion of heat energy in to mechanical energy, solar thermal power generation systems

 

Solar photovoltaic: Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication. Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping, power generation schemes, Basic concepts of Solar power, Solar cells. Applications of Solar-in Hospitals, automobiles, Air cooling, water cooling, Domestic Power generation, Industrial power generation, Traffic signals, Electronic equipments, refrigeration.

(OR)

 

MODULE – IV:   Atmospheric pollution (Theory –6;  Field Work -24 )

Managing atmospheric pollution:           Introduction to Atmospheric pollution-sources and causes. Methods of reducing pollution from vehicles, industries, domestic, urban and rural sources. Devising innovative pollution control devices& methods -filters, bags, traps, separators.

Text Books And Reference Books:

T1.       S. P. Sukhatme, “Solar Energy, Principles of Thermal Collection and Storage,” 6th Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 1990

T2.       George Techobanoglous, “Integrated Solid Waste Management” McGraw - Hill, 1993.

T3.       R.E.Landrefh and P.A.Rebers,” Municipal Solid Wastes-Problems & Solutions”, Lewis, 1997.

T4.       Michael Allaby, “Fog, Smog and poisoned rain”, Facts on File Incorporation, 2002. ISBN:0-8160-4789-8

T5.       Arceivala S. J. and Asolekar S. R., Wastewater Treatment for Pollution Control and Reuse. 3rd Edition, Tata McGraw Hill, New Delhi, 2015.

Essential Reading / Recommended Reading

R1.  George Techobanoglous and Thiesen Ellasen, “Solid Waste Engineering Principles and Management”, Tata-McGraw – Hill, 1997.

R2. Blide A.D. and Sundaresan, B.B., “Solid Waste Management in Developing Countries”, INSDOC, 1993.

R3. Arun Kumar Jain, Ashok Kumar Jain, B.C., Punmia, “Wastewater Engineering (Environmental Engineering-II), (Including Air Pollution)”, Laxmi Publications Pvt. Ltd., 2014, ISBN 10: 8131805964, ISBN 13: 9788131805961.

Evaluation Pattern

 

Category

Weightage for CIA

1

Courses with only Practical

50

 

RM644E3 - MOBILE APPLICATION DEVELOPMENT (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students to:

Understand system requirements for mobile applications

Generate suitable design using specific mobile development frameworks

Generate mobile application design

Implement the design using specific mobile development frameworks

Deploy the mobile applications in marketplace for distribution

Learning Outcome

CO1: Explain the challenges in mobile application design and development{L1}

CO2: Develop design for mobile applications for specific requirements {L2}

CO3: Implement the design using Objective C and iOS {L3}

CO4: Implement the design using Android SDK {L3}

CO5: Deploy mobile applications in Android and iPhone marketplace for distribution{L2}

Unit-1
Teaching Hours:9
Introduction
 

Introduction to mobile applications – Embedded systems - Market and business drivers for mobile applications – Publishing and delivery of mobile applications – Requirements gathering and validation for mobile applications

Unit-2
Teaching Hours:9
Basic Design
 

Introduction – Basics of embedded systems design – Embedded OS - Design constraints for mobile applications, both hardware and software related – Architecting mobile applications – user interfaces for mobile applications – touch events and gestures – Achieving quality constraints – performance, usability, security, availability and modifiability

Unit-3
Teaching Hours:9
Advanced Design
 

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications

Unit-4
Teaching Hours:9
Technology I ? Android
 

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI – Persisting data using SQLite – Packaging and deployment – Interaction with server-side applications – Using Google Maps, GPS and Wifi – Integration with social media applications.

 

Unit-5
Teaching Hours:9
Technology Ii - IOS
 

Introduction to Objective C – iOS features – UI implementation – Touch frameworks – Data persistence using Core Data and SQLite – Location aware applications using Core Location and Map Kit – Integrating calendar and address book with social media application – Using Wifi - iPhone marketplace.

Text Books And Reference Books:

T1.  Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012

T2.  Charlie Collins, Michael Galpin and Matthias Kappler, “Android in Practice”, DreamTech, 2012.

Essential Reading / Recommended Reading

R1. James Dovey and Ash Furrow, “Beginning Objective C”, Apress, 2012

R2. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, “Beginning iOS 6 Development: Exploring the iOS SDK”, Apress, 2013. 

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM644E4 - UNDER WATER ROBOTICS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students to demonstrate knowledge and understanding of:

1. The range of underwater robotic systems in operation and their applications.

2. The impact of mission specific requirements on vehicle design.

3. Manoeuvring simulations of underwater robots.

4. Software architectures for maritime robots.

 

5. Practical control system design for  depth and heading control of underwater robots.

Learning Outcome

CO1: Develop a basic understanding of under water robotics. (L2)

CO2: Understand the main approaches to control of the underwater robotics. (L2)

CO3: Understand the engineering concepts in underwater robotics. (L2)

CO4: Recognize problems in autonomous underwater system. (L2)

CO5: Describe the applications of underwater robotics. (L2)

Unit-1
Teaching Hours:8
INTRODUCTION TO UNDERWATER ROBOTICS
 

Robotics in Water - Basics Representation of Underwater Robot - Types and Classification of Underwater Robotics - Differentiating Aerial and Underwater Robotics - why it is called an perfect engineering product - Overview about Environmental Factors affecting object in water

Unit-2
Teaching Hours:10
CONTROL OF THE UNDERWATER ROBOTICS
 

Control System and Types of Control Systems in Underwater Robotics - Sensors Connected with the Underwater Robotics - Introduction to Underwater Manipulators - Applications of  Underwater Vehicles

Unit-3
Teaching Hours:10
ENGINEERING CONCEPTS IN UNDERWATER ROBOTICS
 

Introduction to Fluid Dynamics - Studying of FD Model - Computation Fluid Dynamics on Water Bodies Introduction to Hydraulics - Hydraulics Acting on an Object - Hydraulics as Underwater Pressure Compensator Introduction to Pressure Dynamics - Buoyancy Concept - Studying various Polymers in Buoyancy and Pressure Calculations Introduction to Electrical Power Driven Systems - Studying Different Types - PLC and HMI Interface Systems an Overlook - Electrical Archaeology of Systems

Unit-4
Teaching Hours:8
AUTONOMOUS UNDERWATER SYSTEM
 

Introduction to AUVS - Development of AUV / ROV in Market - Case Study on AUV Control  System Basics - Case Study on Subsea Manipulator - Case Study on Technologies Used

Unit-5
Teaching Hours:9
APPLICATIONS OF UNDERWATER ROBOTICS
 

Case Studies and procedure for design of underwater robots- offshore oil and gas industries,  applications in maritime search and rescue and environmental monitoring

Text Books And Reference Books:

T1. Gianluca Antonelli, Underwater Robots (Springer Tracts in Advanced Robotics),

 

Springer; 3rd ed. 2014.

Essential Reading / Recommended Reading

R1.Steven W. Moore, Harry Bohm and Vickie, Underwater Robotics: Science, Design &

 

Fabrication MATE Center, 2013.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

ECOE761E01 - AUTOMOTIVE ELECTRONICS (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The aim of this course is to enable student to understand the complete dynamics of automotive electronics, design and implementation of the electronics that contributes to the safety of the automobiles, add-on features, and comforts. 

Learning Outcome

CO1: Implement various control requirements in the automotive system

CO2: Comprehend dashboard electronics and engine system electronics

CO3: Identify various physical parameters that are to be sensed and monitored for maintaining the stability of the vehicle under dynamic conditions

CO4: Understand and implement the controls and actuator system pertaining to the comfort and safety of commuters

CO5: Design sensor network for mechanical fault diagnostics in an automotive vehicle

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Text Books And Reference Books:

T1.A William B. Ribbens, "Understanding Automotive Electronics",6th Edition SAMS/Elsevier publishing, 2007

Essential Reading / Recommended Reading

R1. Robert Bosch Gmbh,"Automotive Electrics and Automotive Electronics-Systems and Components, Networking and Hybrid Drive", 5th Edition, Springer, Vieweg,  2007

Evaluation Pattern

Components of the CIA
CIA I : Subject Assignments / Online Tests : 10 marks
CIA II : Mid Semester Examination (Theory) : 25 marks
CIAIII:Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations
/publications : 10 marks
Attendance : 05 marks
Total : 50 marks
Mid Semester Examination (MSE) : Theory Papers:
The MSE is conducted for 50 marks of 2 hours duration.
Question paper pattern; Five out of Six questions have to be answered. Each question carries 10
marks
End Semester Examination (ESE):
The ESE is conducted for 100 marks of 3 hours duration.

NCCOE02 - NCC2 (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This Course is offered for cadets of NCC who have successfully completed their 'B' or 'C'- Certificate in NCC.

This Course is offered in Lieu of the Open Elective course offered by the department during the 7th Semester.

·     On Successful Completion of the 'B' or 'C'- Certificate course that is conducted by the NCC Directorate Centrally. Marks will be awarded for 100 marks.

Learning Outcome

CO1: Demonstrate Foot drill, Rifle Drill and ceremonial Drill(L3)

CO2: Illustrate the importance and need for National integration(L2)

CO3: Make use of Leadership traits to organize critical decisions (L3)

CO4: Relate to Social Issues and contribute to the Environmental sustainability (L2)

CO5: Utilize Community Development skills for social wellbeing(L3)

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Text Books And Reference Books:

Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

Textbook of Environmental Studies for Undergraduate Courses, Erach Barucha, Orient Black swan Pvt Ltd, 2nd edition, march 2021

Evaluation Pattern

The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following.

·       Each cadet will appear for  'B' or 'C'- Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350.

·       Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet.  

 

RM733 - CONTROL SYSTEM (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

● To teach the fundamental concepts of control systems & mathematical modelling of system.

● To study the concept of time response and frequency response of the system.

● To teach the basics of stability analysis of the system.

Learning Outcome

CO-1: Understand the modelling of linear invariant systems using transfer function and state space representations

CO-2: Design simple feedback controllers

CO-3: Understand the concept of stability and its assessment for linear time invariant systems.

CO-4: Analyze the stability of a linear continuous- time system using method of Bode plot, polar plot and Nyquist plot for systems.

CO-5: Compare continuous-time systems in state space form with decomposition technics and simplify transfer function from state space model

Unit-1
Teaching Hours:9
Introduction
 

Introduction to control problem- Industrial Control examples. Transfer function. System with dead-time. System response. Control hardware and their models: Closed-loop systems. Block diagram and signal flow graph analysis.

Unit-2
Teaching Hours:9
Controllers
 

Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. Feed- forward and multi-loop control configurations, stability concept, relative stability, Routh stability criterion.

Unit-3
Teaching Hours:9
Time response of second-order systems
 

Time response of second-order systems, steady-state errors and error constants. Performance specifications in time-domain. Root locus method of design. Lead and lag compensation.

Unit-4
Teaching Hours:9
Frequency-response analysis
 

Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquist stability criterion. Performance specifications in frequency-domain. Frequency- domain methods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation. Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution.

Unit-5
Teaching Hours:9
State variable Analysis
 

State variable Analysis- Concepts of state, state variable, state model, state models for linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability & observability. Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, trekking problem. Nonlinear system – Basic concept & analysis.

Text Books And Reference Books:

T1. Gopal. M., “Control Systems: Principles and Design”, Tata McGraw-Hill, 1997.

T2. Kuo, B.C., “Automatic Control System”, Prentice Hall, sixth edition, 1993.

Essential Reading / Recommended Reading

R1. Ogata, K., “Modern Control Engineering”, Prentice Hall, second edition, 1991.

R2. Nagrath & Gopal, “Modern Control Engineering”, New Age International, New Delhi.

R3. Ambikapathy A., Control System, Khanna Book Publishing Company, 2018.

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM741E1 - RAPID PROTOTYPING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course objectives: 

The course will enable the students to 

       Describe the current available rapid prototyping systems, their fundamental operating principles, and their characteristics.

       Describe complementary, secondary fabrication processes commonly used with the above rapid prototyping systems.

       Select the appropriate fabrication technology, or  technologies, for a given prototyping task.

Learning Outcome

CO-1: Apply the basic principles of rapid prototyping (RP), rapid tooling (RT), and reverse engineering (RE) technologies to product development. (L3)

CO-2: Decipher the limitations of RP, RT, and RE technologies for product development. (L3)

CO-3: Realise the application of RP, RT, and RE technologies for product development. (L3)

CO-4: Describe product development, conceptual design and classify rapid prototyping systems; explain stereo lithography process and applications. (L2)

CO-5: Explain direct metal laser sintering, LOM and fusion deposition modelling processes. (L2)

Unit-1
Teaching Hours:9
Introduction
 

Need for time compression in product development, Product development – conceptual design – development – detail design – prototype – tooling. Classification of RP systems, Stereo lithography systems – Principle – process parameters – process details – machine details, Applications.

Unit-2
Teaching Hours:9
Unit-2: DIRECT METAL LASER SINTERING (DMLS) SYSTEM
 

Principle – process parameters – process details – machine details, Applications. Fusion Deposition Modelling – Principle – process parameters – process details – machine details, Applications. Laminated Object Manufacturing – Principle – process parameters – process details – machine details, Applications.

Unit-3
Teaching Hours:9
Unit-3: SOLID GROUND CURING
 

Principle – process parameters – process details – machine details, Applications. 3-Dimensional printers – Principle – process parameters – process details – machine details,  Applications, and other concept modellers like thermo jet printers, Sanders model maker, JP system 5, Object Quadra system

Unit-4
Teaching Hours:9
Unit-4: APPLICATIONS OF RAPID PROTOTYPING
 

Laser Engineering Net Shaping (LENS), Ballistic Particle Manufacturing (BPM) – Principle.  Introduction to rapid tooling – direct and indirect method, software for RP – STL files, Magics, Mimics. Application of Rapid prototyping in Medical field.

Unit-5
Teaching Hours:9
Unit-5: VIRTUAL PROTOTYPING
 

Introduction to Virtual prototyping- End to end prototyping- simulation components of virtual  prototyping- effects- economics of virtual prototyping.

Text Books And Reference Books:

Text Books:

T1. Chua C.K., Leong K.F. and Lim C.S., ―Rapid Prototyping: Principles and Applications‖, 3e, 

World Scientific Publications, 2010. 

T2. Paul F Jacobs, ―Rapid Prototyping and Manufacturing–Fundamentals of stereolithography, 

Society of Manufacturing Engineering Dearborn, USA 1992

 

Essential Reading / Recommended Reading

Reference Books:

R1. Pham,D.T. and Dimov.S.S., ―Rapid manufacturing, Springer, London, 2001. 

R2. Joe Cecil, ―Virtual Enginering‖ , Momentum Press, 2010

 

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Minimum marks to pass

Maximum marks

CIA-1

20

10

-

10

CIA-2

50

25

-

25

CIA-3

20

10

-

10

Attendance

05

05

-

05

ESE

100

50

20

50

 

TOTAL

100

-

100

RM742E2 - PRODUCT DESIGN AND DEVELOPMENT (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To educate students a clear understanding of factors to be considered in designing parts and components with focus on manufacturability.

Learning Outcome

CO1: Identify and analyse the product design and development processes in manufacturing industry. (L1)

CO2: Define the components and their functions of product design and development processes and their relationships from concept to customer over whole product lifecycle. (L2)

CO3: Analyse, evaluate and apply the methodologies for product design, development and management. (L5)

CO4: Carry out cost and benefit analysis through various cost models. (L5)

CO5: Be familiar with the design protection and Intellectual Property.(L2)

Unit-1
Teaching Hours:9
THE MORPHOLOGY OF DESIGN
 

(The seven phases) - Primary design phases and flowcharting - Role of allowance - Process capability and Tolerance in detailed design & assembly.

Unit-1
Teaching Hours:9
INTRODUCTION TO PRODUCT DESIGN
 

Asimow’s model: Definition of product design - Design by evolution - Design by innovation - Essential factors of Product design - Production-Consumption cycle - Flow and value addition in the Production- Consumption cycle.

Unit-2
Teaching Hours:9
REVIEW OF STRENGTH, STIFFNESS AND RIGIDITY CONSIDERATIONS IN PRODUCT DESIGN
 

Principal stress trajectories (Force-Flow lines) - Balanced design - Criteria and objectives of Design - Material Toughness: Resilience designing for uniform strength - Tension vis-à-vis Compression. Review of production processes - Machining processes - Non-Traditional machining Processes.

Unit-2
Teaching Hours:9
PRODUCT DESIGN PRACTICE AND INDUSTRY
 

Introduction - Product Strategies - Time to Market - Analysis of the product - The S’s Standardization - Renard Series – Simplification - Role of Aesthetics in Product Design - Functional Design Practice.

Unit-3
Teaching Hours:9
DESIGN FOR PRODUCTION-METAL PARTS
 

Producibility requirements in the Design of machine components design - Forging design - Pressed component design - Casting design - Design for machining ease - The role of process engineer - Ease of location casting and special casting. Designing with plastic rubber, ceramics and wood: Approach to design with plastics - plastic bush bearings - gears in plastics - rubber parts - design recommendations for rubber parts - ceramic and glass parts.

Unit-3
Teaching Hours:9
OPTIMIZATION IN DESIGN
 

Introduction - Siddal’s classification of design approach - Optimization by differential calculus - Legrange Multipliers - Linear programming (Simplex Method) - Geometric programming - Johnson’s method of optimum design.

Unit-4
Teaching Hours:9
ECONOMIC FACTOR INFLUENCING DESIGN
 

Product Value - Design for safety - Reliability and environmental considerations - Manufacturing operations in relation to Design - Economic analysis - Profit and Competitiveness - Break-Even analysis - Economic of a new product design.

Unit-4
Teaching Hours:9
HUMAN ENGINEERING CONSIDERATION IN PRODUCT DESIGN
 

Introduction - Human being as applicator of forces - Anthropometry; Man as occupant of space - The design of controls - The design of displays - Man/Machine information exchange.

Unit-5
Teaching Hours:9
VALUE ENGINEERING AND PRODUCT DESIGN
 

Introduction - Historical perspective - What is value? Nature and measurement of value - Normal degree of value - Importance of value - the value analysis job plan – creativity - Steps to problemsolving and value analysis - Value analysis test - Value engineering idea generation check-list cost reduction through value engineering case study on Tap switch control assembly.

Unit-5
Teaching Hours:9
MATERIAL AND PROCESS SELECTION IN VALUE ENGINEERING
 

Modern approach to product design: Concurrent design and Quality function deployment (QFD).

Text Books And Reference Books:

1. A.C. Chitale and R.C. Gupta, “Product Design and Manufacturing, 6 th edition, PHI, 2011.

2. Karl T.Ulrich & Steven D, Epinger, “Product Design & Development”, 4th edition, Tata Mc. Graw Hill, 2007.

Essential Reading / Recommended Reading

1. Tim jones, Butterworth Heinmann, “New Product Development”, Oxford, mc 1997.

2. Roland EngeneKinetovicz, “New Product Development: Design & Analysis” John Wiley and Sosn Inc., N.Y.1990.

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM742E4 - SAFETY ENGINEERING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 
  • To know the safety rules and regulations, standards and codes.
  • To study various mechanical machines and their safety importance.
  • To understand the principles of machine guarding and operation of protective devices.
  • To know the working principle of mechanical engineering processes such as metal forming and joining process and their safety risks.
  • To develop the knowledge related to health and welfare measures in engineering industry.

 

Learning Outcome

CO-1: Gain the knowledge in safety rules, standards and codes in various mechanical engineering processes. (L1)

CO-2: Design machine guarding systems for various machines such as lathe, drilling, boring, milling etc.(L2)

CO-3: Implement the safety concepts in welding, gas cutting, storage and handling of gas cylinders, metal forming processes etc.(L3)

CO-4: Demonstrate the knowledge in testing and inspection as per rules in boilers, heat treatment operations etc. (L3)

CO-5: Outline preventive measures in health and welfare of workers aspects in engineering industry.(L2)

Unit-1
Teaching Hours:9
SAFETY IN METAL WORKING MACHINERY AND WOOD WORKING MACHINES
 

General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electric.

Unit-2
Teaching Hours:9
PRINCIPLES OF MACHINE GUARDING
 

Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing- guard construction- guard opening. Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses-forge hammer-flywheels-shafts-couplings-gears-sprockets wheels and chains-pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems.

Unit-3
Teaching Hours:9
SAFETY IN WELDING AND GAS CUTTING
 

Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases-colour coding – flashback arrestor – leak detection-pipe line safety-storage and handling of gas cylinders.

Unit-4
Teaching Hours:9
SAFETY IN COLD FARMING AND HOT WORKING OF METALS
 

Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes. Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures. Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes.

Unit-5
Teaching Hours:9
SAFETY IN FINISHING, INSPECTION AND TESTING
 

Heat treatment operations, electro plating, paint shops, sand and shot blasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation. Health and welfare measures in engineering industry-pollution control in engineering industry, industrial waste disposal.

Text Books And Reference Books:

T1.  Heinrich H. W, “Industrial accident prevention”, McGraw Hill Company, New York, 1980

T2.  Frank P. Lees, “Loss prevention in process industries”, Vol. I, II & III, Butterworth, London, 1980

T3.  Brown D. B, “System analysis and design for safety” Prentice Hall, New Jercy, 1976

T4. “Accident Prevention Manual” – NSC, Chicago, 1982. 2. “Occupational safety Manual” BHEL, Trichy, 1988. 3. “Safety Management by John V. Grimaldi and Rollin H. Simonds, All India Travelers Book seller, New Delhi, 1989. 

Essential Reading / Recommended Reading

R1. Derek James, “Fire prevention hand book”, Butter Worths and Company, London, 1986

R2. “Accident prevention manual for industrial operations”, National Safety Council,    Chicago, 1989

R3. Clayton and Clayton, “Patty’s industrial hygiene and toxicology”, Vol. I, II & III, Wiley Interscience

R4. “Safety in Industry” N.V. Krishnan Jaico Publishery House, 1996.

R5. Indian Boiler acts and Regulations, Government of India.

R6. Safety in the use of wood working machines, HMSO, UK 1992.

R7. Health and Safety in welding and Allied processes, welding Institute, UK, High Tech. Publishing Ltd., London, 1989.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM744E3 - HYBRID-ELECTRIC VEHICLES (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students:

1. To understand the principles of traction

2. To understand the characteristics of hybrid vehicles

3. To differentiate various motors and drives

4. To integrate various subsystems

5. To understand energy conservation principles in hybrid vehicles

Learning Outcome

CO1: To understand concepts of hybrid and electric drive configuration {L2}

CO2: To explain about different types of electric machines that can be used, suitable energy storage devices etc. {L2}

CO3: To identify the application of various drive components {L3}

CO4: To select of proper component for particular applications. {L3}

CO5: To understand different strategies used for energy management. {L2}

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Text Books And Reference Books:

T1. Bimal K. Bose, Power Electronics and Motor drives, Elsevier, 2011.

T2. Iqbal Hussain, Electric and Hybrid Vehicles: Design Fundamentals, 2nd edition, CRC Pr I Llc, 2010 T3 Lyla B Das,” Embedded Systems-An Integrated Approach”, Pearson, 2013.

Essential Reading / Recommended Reading

R1. Sira -Ramirez, R. Silva Ortigoza, Control Design Techniques in Power Electronics Devices, Springer, 2006.

R2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, Sliding mode control of switching Power Converters, CRC Press, 2011.

R3. Ion Boldea and S.A Nasar, Electric drives, CRC Press, 2005.

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM751 - AUTOMATION AND PLC LABORATORY (2021 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

The series of experiments encompass a comprehensive exploration of Programmable Logic Controller (PLC) programming and its applications. Beginning with an introduction to ladder logic, Boolean algebra, and PLC configuration, participants delve into practical exercises involving logic gates, counters, and down counters. Subsequent exercises focus on programming techniques, including mathematical operations and latch control circuits.

Learning Outcome

CO-1: Demonstrate proficiency in PLC programming, including the ability to design, implement, and troubleshoot control systems using ladder logic and Boolean algebra. (L3).

CO-2: Apply their knowledge of PLC programming to develop and optimize a variety of control systems, ranging from basic logic gates to more complex applications like motor control circuits and automated car parking systems. (L3).

CO-3: Develop strong problem-solving and optimization skills, enabling them to analyze control system requirements, identify issues, and implement effective solutions to enhance system performance and efficiency. (L5).

Unit-1
Teaching Hours:30
List of Experiments
 

List of Experiments (If any):

Practical Hours

1.      Introduction to ladder logic, Boolean algebra, configuring PLC.

2

2.      Exercises on logic gates, counter and down counter

2

3.      Programming using mathematical operations.

2

4.  Programming latch control circuit

2

5. Programming Motor control circuit

2

6. Programming for Automated car parking system using counter

2

7. Programming for Sequence control operations

2

8. Programming for Sorting system

4

9. Programming for Measuring system

4

10. Programming Traffic light control

4

11. Programming Tank water level control

4

Text Books And Reference Books:

 John W. Webb & Ronald A. Reis, Programmable Logic Controllers – Principles and Applications, Fifth Edition, Pearson Education (2008).  

Essential Reading / Recommended Reading

John R. Hackworth & Frederick D. Hackworth Jr, Programmable Logic Controllers – Programming Methods and Applications, Pearson (2011).

Evaluation Pattern

Sl No

Component

Assessed for

Scale down to

1

CIA

50

25

2

ESE

50

25

3

Total

100

25

RM781 - PROJECT WORK PHASE - I (2021 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Project work Phase-I includes identifying the problem, literature review and necessary ground work so as to continue it as Phase-II during VIII semester.

Presentations on these are to be given as per the schedule announced by the department.

Learning Outcome

CO-1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2]

CO-2: Develop a skill for handling multiple situations, practical problems, analyzing teamwork and communication abilities. [L2]

CO-3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L3]

CO-4: Analyze the work environment and create solutions to problems. [L4]

CO-5: Build a record of work experience and construct a good relationship with the teammates. [L5]

Unit-1
Teaching Hours:60
Project
 

Continuous Internal Assessment:100 Marks

  • Presentation assessed by Panel Members
  • Assessment by the Guide
  • Project  Progress Reports
Text Books And Reference Books:

journals

Essential Reading / Recommended Reading

journals

Evaluation Pattern

Continuous Internal Assessment:100 Marks

Presentation assessed by Panel Members

Assessment by the Guide

Project Progress Reports

 

 

RM782 - INTERNSHIP (2021 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Internships are short-term work experiences that will allow a student to observe and participate in professional work environments and explore how his interests relate to possible careers. They are important learning opportunities through industry exposure and practices.   More specifically, doing internships is beneficial because they provide the opportunity to:

  • Get an inside view of an industry and organization/company
  • Gain valuable skills and knowledge
  • Make professional connections and enhance student's network
  • Get experience in a field to allow the student to make a career transition

Learning Outcome

CO1: To experience 60 days of internship training, enabling the student for onsite visits, study projects, and practical training. {L4}

CO2: To develop a skill for handling multiple situations, practical problems, analyzing teamwork, and communication abilities. {L2}

CO3: To integrate theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. {L3}

Unit-1
Teaching Hours:60
INTERNSHIP
 
  1. The student shall undergo an Internship for 60 days starting from the end of 2nd semester examination and completing it during the initial period of 7th semester.
  2. The department shall nominate a faculty as a mentor for a group of students to prepare and monitor the progress of the students
  3. The students shall report the progress of the internship to the mentor/guide at regular intervals and may seek his/her advise.
  4. The Internship shall be completed by the end of 7th semester.
  5. The students are permitted to carry out the internship outside India with the following conditions, the entire expenses are to be borne by the student and the University will not give any financial assistance.
  6. Students can also undergo internships arranged by the department during vacation.
  7. After completion of Internship, students shall submit a report to the department with the approval of both internal and external guides/mentors.
  8. There will be an assessment for the internship for 2 credits, in the form of report assessment by the guide/mentor and a presentation on the internship given to department constituted panel.
  9. Mandatory one MOOC course completed certificate is required at the time of submission of report.
Text Books And Reference Books:

T1.Pamela Myers Kiser, “Human Services Internship: Getting the Most From Your Experience”, Cengage Learning, 4th Edition, 2016. (ISBN13: 978-1305087347)

T2.H. Frederick Sweitzer, “Successful Internship”, Brooks/Cole Publishing Co., 5th Edition, 2019.

Essential Reading / Recommended Reading

R1.Bill Hobbs, Zach Schleien, “Hacking the Internship Process (Work)”, La Plata Press, Paperback,  2017.

Evaluation Pattern

Continuous Internal Assessment (CIA) is based upon

●   No of Internship Days : 20 marks

●   Type of Industry and Work Carried out : 10 marks

●   Report on Internship : 10 marks

●   Presentation on Internship : 10 marks

RM841E4 - INDUSTRIAL ROBOTICS AND MATERIAL HANDLING SYSTEMS (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students:

• To introduce the basic concepts, parts of robots and types of robots.

• To make the student familiar with the various drive systems for robot, sensors and their applications in robots and programming of robots.

• To select the robots according to its usage.

• To discuss about the various applications of robots, justification and implementation of robot.

• To know about material handling in a system.

Learning Outcome

CO1: Learn about the basic concepts, parts of robots and types of robots.

CO2: To design automatic manufacturing cells with robotic control using the principle behind robotic drive system, end effectors, sensor, machine vision robot kinematics and programming.

CO3: Ability in selecting the required robot.

CO4: Know various applications of robots

CO5: Apply their knowledge in handling the materials.

Unit-1
Teaching Hours:6
INTRODUCTION
 

Types of industrial robots, Load handling capacity, general considerations in Robotic material handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot centered cell.

Unit-2
Teaching Hours:8
ROBOTS FOR INSPECTION
 

Robotic vision systems, image representation, object recognition and categorization, depth measurement, image data compression, visual inspection, software considerations.

Unit-3
Teaching Hours:8
OTHER APPLICATIONS
 

Application of Robots in continuous arc welding, Spot welding, Spray painting, assembly operation, cleaning, robot for underwater applications.

Unit-4
Teaching Hours:11
END EFFECTORS
 

Gripper force analysis and gripper design, design of multiple degrees of freedom, active and passive grippers.

SELECTION OF ROBOT: Factors influencing the choice of a robot, robot performance testing, economics of robotisation, Impact of robot on industry and society.

Unit-5
Teaching Hours:12
MATERIAL HANDLING
 

Concepts of material handling, principles and considerations in material handling systems design, conventional material handling systems - industrial trucks, monorails, rail guided vehicles, conveyor systems, cranes and hoists, advanced material handling systems, automated guided vehicle systems, automated storage and retrieval systems(ASRS), bar code technology, radio frequency identification technology.

Text Books And Reference Books:

T1. Richaerd D Klafter, Thomas Achmielewski and Mickael Negin, “Robotic Engineering – An integrated Approach” Prentice HallIndia, New Delhi, 2001.

T2. Mikell P. Groover,”Automation, Production Systems, and Computer Integrated Manufacturing“, 2nd Edition, John Wiley & sons, Inc, 2007.

Essential Reading / Recommended Reading

R1. James A Rehg, “Introduction to Robotics in CIM Systems”, Prentice Hall of India, 2002.

R2. Deb S R, "Robotics Technology and Flexible Automation", Tata McGraw Hill, New Delhi, 1994.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSES

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM841E5 - PROCESS PLANNING AND COST ESTIMATION (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course should enable the students to:

● Understand the basic concepts of process Planning and estimation and

● Apply different methods of cost estimation in different manufacturing shops

● Learn the concepts of process planning and cost estimation in competitive manufacturing systems and organizations.

Learning Outcome

CO1: Select the process, equipment and tools for various industrial products.

CO2: Develop process planning activity chart.

CO3: Explain the concept of cost estimation.

CO4: Solve the job order cost for different type of shop floor.

CO5: Calculate the machining time for various machining operations.

Unit-1
Teaching Hours:9
INTRODUCTION TO PROCESS PLANNING
 

Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection.

Unit-2
Teaching Hours:9
PROCESS PLANNING ACTIVITIES
 

Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies.

Unit-3
Teaching Hours:9
INTRODUCTION TO COST ESTIMATION
 

Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material costallocation of overhead charges- Calculation of depreciation cost

Unit-4
Teaching Hours:9
PRODUCTION COST ESTIMATION
 

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop.

Unit-5
Teaching Hours:9
MACHINING TIME CALCULATION
 

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring -Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding.

Text Books And Reference Books:

T1. Peter scalon, “Process planning, Design/Manufacture Interface”, Elsevier science technology Books, Dec 2002.

T2. Sinha B.P, “Mechanical Estimating and Costing”, Tata-McGraw Hill publishing co, 1995.

Essential Reading / Recommended Reading

R1. Chitale A.V. and Gupta R.C., “Product Design and Manufacturing”, 2nd Edition, PHI, 2002.

R2. Ostwalal P.F. and Munez J., “Manufacturing Processes and systems”, 9th Edition, John Wiley, 1998.

R3. Russell R.S and Tailor B.W, “Operations Management”, 4th Edition, PHI, 2003.

R4. Mikell P. Groover, “Automation, Production, Systems and Computer Integrated Manufacturing”, Pearson Education 2001.

R5. K.C. Jain & L.N. Aggarwal, “Production Planning Control and Industrial Management”, Khanna Publishers 1990.

Evaluation Pattern

THEORY

 

Component

Assessed for

Scaled down to

Min. marks to pass

Max. marks

1

CIA-1

20

10

-

10

2

CIA-2

50

25

-

25

3

CIA-3

20

10

-

10

4

Attendance

05

05

-

05

5

ESE

100

50

20

50

 

 

TOTAL

100

-

100

RM881 - PROJECT WORK PHASE-II (2021 Batch)

Total Teaching Hours for Semester:90
No of Lecture Hours/Week:16
Max Marks:300
Credits:10

Course Objectives/Course Description

 

Students in a group of maximum four work on a project. The nature of project may be a design and fabrication, modelling and analysis, a case study, etc. The project may also be taken at an industry ot research organisation with the permission from the department. The faculty member will be assigned as an internal guide who will monitor assess the progress regularly. A report on the project work in the approved format is to submitted on or before the dates announced by the department. Examination requires demonstration of the project in the presence of an external examiner.

Learning Outcome

CO1: Enabling the student to identify the problems in the existing systems of their proposed area and define the objectives of their proposed work. [L2]

CO2: Develop a skill for handling multiple situations, practical problems, analyzing team work and communication abilities. [L4]

CO3: Compile theory with practice and carry out performance objectives on strong work ethics, persistence, adaptability, and critical thinking. [L5]

CO4: Analyze the work environment and create solutions to problems. [L4]

CO5: Build a record of work experience and construct a good relationship with the teammates. [L4]

Unit-1
Teaching Hours:300
Projects Based on Specilaistions
 

Specializations include:

Design

Thermal

Manufacturing

Materials

Management Etc...

 

  • Project work may be assigned to a Group of students (with due approval from the department) 
  • Each project will be supervised by a faculty member based on their expertise and assessed via written reports and presentation skills.
  • If the respective guide is not available for the project, then the project coordinator will intervene to get an appropriate guide for a suitable project.
  • Students should submit the weekly progress report signed duly by their Project Guide throughout the project. 
  • Training on software -Latex will be given to students to help them for writing the final report.
  • The students are required to prepare a synopsis of their chosen area of interest based on the problem identification.
  •  The project guide will review the synopsis and give valuable suggestions for improvement of the synopsis.
  • After finalizing the project synopsis, upon Zeroth's review of the project review committee, the project work and title will be finalized.
  • The project review committee will be having a review on the update on the project work in a presence of a review panel of Members and faculty members every month.
  • The final project review will close the project work with respect to the problem definition and objectives achieved in return.
  • The draft report will be submitted for correction to the project guide followed by submission of the final report for Project Guide, HOD, and Dean Approval and signature.
  • At the end of the project external viva-voce is conducted for all the projects and Novel projects are encouraged for publication in the Journal.
  • Innovative projects are proposed to showcase in different engineering exhibitions and if possible students are encouraged to file a patent on those ideas.

 

Text Books And Reference Books:

The theme of the Project related journal papers and reference books.

Essential Reading / Recommended Reading

The theme of the Project related journal papers and reference books.

Evaluation Pattern

CIA -200M

Review - 1 : 50 marks

Review - 2 : 60 marks

Review - 3 : 90 marks

ESE-100M

Initial Write Up   : 15 marks

Viva Voce: 25 marks

Demonstration: 35 marks

Project Report: 25 marks